Skip to main content

Pentabasic Thermoelectricity System Prepared by Powder Metallurgy Method and the Performance Thermoelectric Generator Modules

  • Conference paper
  • First Online:
Advances in Energy and Environmental Materials (CMC 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 2396 Accesses

Abstract

With the technological development and awareness of energy conservation and environmental protection, how to take advantage of waste heat has been concerned global. However, effective methods to recycle low temperature waste heat which is lower than 200 °C are still lacked. A kind of pentabasic thermoelectricity system which is prepared by smelting and powder metallurgy method is described in this paper. Thermoelectric generator (TEG) modules with different area and height ratio (A/H) p-n couples are assembled. At temperature gradient 100 K, the TEG module can obtain the biggest load power 2.39 W corresponding the module with A/H = 5.5 and load resistance 1.5 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012)

    Google Scholar 

  2. D. Wang, X. Ling, H. Peng, L. Liu, L. Tao, Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 50, 343 (2013)

    Google Scholar 

  3. Z. Wang, N. Zhou, J. Guo, X. Wang, Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 40, 107–115 (2012)

    Google Scholar 

  4. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32, 525–540 (2012)

    Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Google Scholar 

  6. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Google Scholar 

  7. M. Barati, S. Esfahani, T.A. Utigard, Energy recovery from high temperature slags. Energy 36, 5440 (2011)

    Google Scholar 

  8. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J.Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008)

    Google Scholar 

  9. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Edit. 48, 8616–8639 (2009)

    Google Scholar 

  10. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Google Scholar 

  11. Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, L.D. Chen, Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016)

    Google Scholar 

  12. D. Kraemer, J. Sui, K. McEnaney, H. Zhao, Q. Jie, Z.F. Renand, G. Chen, High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci. 8, 1299–1308 (2015)

    Google Scholar 

  13. P.A. Zong, R. Hanus, M. Dylla, Y.S. Tang, J.C. Liao, Q.H. Zhang, G.J. Snyder, L.D. Chen, Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017)

    Google Scholar 

  14. Y.S. Park, T. Thompson, Y. Kim, J.R. Salvador, J.S. Sakamoto, Protective enamel coating for n- and p-type skutterudite thermoelectric materials. J. Mater. Sci. 50, 1500–1512 (2015)

    Google Scholar 

  15. J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, Power-generation characteristics after vibration and thermal stresses of thermoelectric unicouples with CoSb3/Ti/Mo(Cu) interfaces. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014)

    Google Scholar 

  16. H.S. Kim, W.S. Liu, Z.F. Ren, The bridge between the materials and devices of thermoelectric power generators. Energy Environ. Sci. 10, 69–85 (2017)

    Google Scholar 

  17. T. Sakamoto, Y. Taguchi, T. Kutsuwa, K. Ichimi, S. Kasatani, M. Inada, Investigation of barrier-layer materials for Mg2Si/Ni interfaces. J. Electron. Mater. 45, 321–1327 (2016)

    Google Scholar 

  18. M. Gu, X.G. Xia, X.Y. Huang, S.Q. Bai, X.Y. Li, L.D. Chen, Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. J. Alloys Compd. 671, 238–244 (2016)

    Google Scholar 

  19. F. Hao, P. Qiu, Y. Tang, S. Bai, High efficiency Bi2Te3-basedmaterials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120 (2016)

    Google Scholar 

  20. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, L. Chen, Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Leizig Thermoelectric Technologies Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Luo or Bin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Wang, J., Deng, Y., Lu, C., Luo, Y., Lin, B. (2018). Pentabasic Thermoelectricity System Prepared by Powder Metallurgy Method and the Performance Thermoelectric Generator Modules. In: Han, Y. (eds) Advances in Energy and Environmental Materials. CMC 2017. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0158-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0158-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0157-5

  • Online ISBN: 978-981-13-0158-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics