Skip to main content

Microbial Cellulases: Role in Second-Generation Ethanol Production

  • Chapter
  • First Online:
Microbial Bioprospecting for Sustainable Development

Abstract

Cellulases are a group of hydrolytic enzymes, which work together as a system, to catalyze the hydrolysis of cellulose. Cellulose is a high-molecular-weight linear homopolymer of D-glucopyranose units linked together with β-(l → 4)-glycosidic bonds, with cellobiose dimer being the repeating unit. In nature, cellulose is present in the plant cell walls, in a matrix of hemicellulose and lignin. Cellulose is the most abundant organic polymer on the earth. The renewability of the cellulosic biomass makes it an attractive feedstock for various industrial applications. Nowadays bioethanol production from cellulose, also known as second-generation ethanol production, is the most extensively employed practice, being carried out globally to ensure energy security for future generations by providing a cleaner fuel technology. However, the usefulness of cellulose in ethanol production depends on its conversion into glucose, which can be carried out both chemically as well as enzymatically. Owing to various disadvantages, the chemical methods involving the use of acids are avoided and needed to be replaced with biological methods involving the use of cellulolytic enzymes. Cellulose hydrolysis is mediated by three major types of cellulases, i.e., exoglucanases, endoglucanases, and β-glucosidases. Cellulases are produced naturally by a wide variety of microorganisms, including bacteria, fungi, and actinomycetes. In the second-generation ethanol production, the cost of cellulases is among major economic barriers. However, the exploitation of the microbial cellulolytic systems after their genetic improvement and the other industrially relevant strategies of enzyme production and recycling can make the ethanol production process economical for its wide-scale utilization at the commercial levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharaya S, Chaudhry A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43:844–856

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11

    Article  CAS  Google Scholar 

  • Avellaneda-Torres LM, Pulido CPG, Rojas ET (2014) Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. Braz J Microbiol 45:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Azizi M, Hemmat J, Seifati SM, Torktaz I, Karimi S (2015) Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Braz J Microbiol 46:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The Cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzym Res 2011:1–17

    Article  CAS  Google Scholar 

  • Carvaloh MLA, Carvaloh DF, Gomes EB, Maeda RN, Anna LMMS, de Castro AM, Pereira N Jr (2014) Optimisation of cellulase production by Penicillium funiculosum in a stirred tank bioreactor using multivariate response surface analysis. Enzym Res 2014:1–8

    Google Scholar 

  • Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chang KL, Thitikorn-amorn J, Hsieh JF, Ou BM, Chen SH, Ratanakhanokchai K, Huan PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35:90–95

    Article  CAS  Google Scholar 

  • Chartchalerm INA, Tanawut T, Hikamporn K, Ponpitak P, Virapong P (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176

    Google Scholar 

  • Chen WH, Pen BL, Yu CT, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and stream explosion for bioethanol production. Bioresour Technol 102:2916–2924

    Article  CAS  PubMed  Google Scholar 

  • Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5:1–11

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Wensheng Q (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lima ALG, de Nascimento RP, da Silva Bon EP, Coelho RRR (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzym Microb Technol 37:272–277

    Article  CAS  Google Scholar 

  • del-Pulgar EMG, Saadeddin A (2014) The cellulolytic system of Thermobifida fusca. Crit Rev Microbiol 4:236–247

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant cell wall degrading enzyme complexes. Nat Rev Microbiol 2:541–551

    Article  CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A, Murashima Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323–331

    Article  CAS  Google Scholar 

  • Du R, Su R, Zhang M, Qi W, He Z (2014) Cellulase recycling after high-solids simultaneous saccharification and fermentation of combined pretreated corncob. Front Energy Res 2:1–8

    Article  Google Scholar 

  • Eida MF, Nagaoka T, Wasaki J, Kouno K (2012) Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ 27:226–233

    Article  PubMed Central  Google Scholar 

  • El-Deen AMN, Shata HMAH, Farid MAF (2014) Improvement of β-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. Ann Microbiol 64:627–637

    Article  CAS  Google Scholar 

  • Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:1–17

    Article  CAS  Google Scholar 

  • Estácio Jussie Odisi, Marcela Bruschi Silvestrin, Rodrigo Yoji Uwamori Takahashi, Marcus Adonai Castro da Silva, André Oliveira Souza Lima, (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electronic Journal of Biotechnology 15(5)

    Google Scholar 

  • Fujji T, Inoue H, Ishikawa K (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 3:1–9

    Article  CAS  Google Scholar 

  • Garcia III, Oh AS, Engler CR (1989) Cellulase immobilization on Fe3O4 and characterization. Biotechnol Bioeng 33:321–326

    Article  CAS  PubMed  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Jamaluddin AMK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12

    Article  CAS  Google Scholar 

  • Gilbert IG, Tsao GT (1983) Interaction between solid substrate and cellulase enzymes in cellulose hydrolysis. Annu Rep Ferment Processes (USA) 6:323–358

    Article  CAS  Google Scholar 

  • Gilmore SP, Henske JK, O’Malley MAO (2015) Driving biomass breakdown through engineered cellulosomes. Bioengineered 6:204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden JM, Allgaier M, Miller CS, Hazen TC, Vander Gheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnansounnou E, Dauriat A (2005) Ethanol form biomass: a review. J Sci Ind Res 64:809–821

    Google Scholar 

  • Harchand RK, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus. J Basic Microbiol 37:93–103

    Article  CAS  PubMed  Google Scholar 

  • Harkki A, Mäntylä A, Penttilä M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzym Microb Technol 13:227–233

    Article  CAS  Google Scholar 

  • Haung S, Sheng P, Zhang H (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577

    Article  CAS  Google Scholar 

  • Henrisatt B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726

    Article  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:1–12

    Article  CAS  Google Scholar 

  • Ikeda Y, Parashar A, Chae M, Bressler DC (2015) Reusability of immobilized cellulases with highly retained enzyme activity and their application for the hydrolysis of model substrates and lignocellulosic biomass. J Thermodyn Catal 6:1–7

    Article  CAS  Google Scholar 

  • Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res 4:44–55

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Jayant M, Rashmi J, Shailendra M, Deepesh Y (2011) Production of cellulase by different co-culture of Aspergillus niger and Penicillium chrysogenum from waste paper, cotton waste and bagasse. J Yeast Fungal Res 2:24–27

    CAS  Google Scholar 

  • Juwaied AA, Adnan S, Al-Amiery AAHH (2010) Production of cellulase by different co-culture of Aspergillus niger and Trichoderma viride from waste paper. J Yeast Fungal Res 1:108–111

    CAS  Google Scholar 

  • Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14:277–287

    Article  CAS  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:1–13

    CAS  Google Scholar 

  • Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J:1–7

    Google Scholar 

  • King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bolwes DJ, Bruce NC, Graham IA, Mason SJM (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. PNAS 107:5345–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng:1–5

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2011:1–10

    Article  CAS  Google Scholar 

  • Kumakura M, Tamada M, Kasai N, Kaestu I (1989) Enhancement of cellulase production by immobilization of Trichoderma reesei cells. Biotechnol Bioeng 33:1358–1362

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–191

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L (2017) Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol 40:719–726

    Article  Google Scholar 

  • Li D, Li A, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011:91–99

    Google Scholar 

  • Liang C, Fioroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53

    Article  CAS  PubMed  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Lindedam J, Haven MO, Chylenski P, Jørgensen H, Felby C (2013) Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Bioresour Technol 2013:1–33

    Google Scholar 

  • Liu W, Zhang XZ, Zhang Z, Zhang YHP (2010) Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 76:4914–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatusZ5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation 65:717–725

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan SA, Wi SG, Lee DS, Bae HJ (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287:205–211

    Article  CAS  PubMed  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907

    CAS  Google Scholar 

  • McCarthy AJ (1987) Lignocellulose degrading actinomycetes. FEMS Microbiol Lett 46:45–163

    Article  Google Scholar 

  • Mielenz JR, Bardsley JS, Wyman CE (2009) Fermentation of soybean hulls to ethanol while preserving protein value. Bioresour Technol 100:3532–3539

    Article  CAS  PubMed  Google Scholar 

  • Mienda BS, Idi A, Umar A (2011) Microbiological features of solid state fermentation and its applications – an overview. Res Biotechnol 2:21–26

    Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110:14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:1–12

    Article  CAS  Google Scholar 

  • Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618

    Article  CAS  PubMed  Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski AJ, Dalai AK (2013) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191

    Article  CAS  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Mass R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems and practices. Bioresour Biprocess 4:1–22

    Article  Google Scholar 

  • Odisi EJ, Silvestrin MB, Takahashi RYU, da Silva MAC, Oliveira Souza Lima A, (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron J Biotechnol 15(5):18

    Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Perez JA, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  CAS  PubMed  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158:58–68

    Article  CAS  PubMed  Google Scholar 

  • Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol 7:1–11

    Article  Google Scholar 

  • Rakshit SK, Sahai V (1991) Optimal control strategy for the enhanced production of cellulase enzyme using the new mutant Trichoderma reesei E-12. Bioprocess Eng 6(3):101–107

    Article  CAS  Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340

    Article  Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 54:1–18

    Google Scholar 

  • Robu B, Petruc V, Macoveanu M (2005) Integrated environmental impact and risk assessment of emissions resulted from oil distribution. Environ Eng Manag J 4:499–513

    Article  CAS  Google Scholar 

  • Rooks DJ, McDonald JE, McCarthy AJ (2012) Metagenomic approaches to the discovery of cellulases. Methods Enzymol 510:375–394

    Article  CAS  PubMed  Google Scholar 

  • Rubin E (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  • Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67:183–197

    Article  CAS  PubMed  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. British Microbiol Res J 3:235–258

    Article  CAS  Google Scholar 

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb Technol 41:528–532

    Article  CAS  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015a) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  • Saini A, Aggarwal NK, Yadav A (2015b) Actinomycetes: a source of lignocellulolytic enzymes. Enzym Res 2015:1–15

    Article  CAS  Google Scholar 

  • Sajith S, Sreedevi S, Priji P, Unni KN, Benjamin S (2014) Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann Microbiol 64:763–771

    Article  CAS  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An Overview on Fungal Cellulases with an Industrial Perspective. J Nutr Food Sci 6:461

    Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Tusakn GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aika K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27

    Article  CAS  Google Scholar 

  • Sharada R, Venkateswarlu G, Venkateshwar S, Rao MA (2013) Production of cellulase- a review. Int J Pharm Chem Biol Sci 3:1070–1090

    CAS  Google Scholar 

  • Sibanda T, Selvarajan R, Tereke M (2017) Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms. Microb Biotechnol 10:570–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DF, Carvalho AFA, Shinya TY, Mazali GS, Herculano RD, Oliva-Neto P (2017) Recycle of immobilized endocellulases in different conditions for cellulose hydrolysis. Enzym Res 2017:1–18

    Article  CAS  Google Scholar 

  • Singh A, Patel AK, Adsul M, Mathur A, Singhania RR (2017) Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J 14:600–610

    Article  Google Scholar 

  • Sizova MV, Izquierdo JA, Panikov NS, Lynd LR (2011) Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 77:2282–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohail M, Ahmad A, Khan SA (2016) Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech 6:1–8

    Article  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuel Bioenerg 1:55–63

    Article  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases: production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Thayer DW, Lowther SV, Phillips JG (1984) Cellulolytic activities of strains of the genus Cellulomonas. Int J Syst Bacteriol 34:432–438

    Article  CAS  Google Scholar 

  • Tsai CT, Meyer AS (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-Glucosidase immobilized in calcium alginate. Molecules 19:19390–19406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Virkajarvi I, Niemela MV, Hasanen A, Teir A (2009) Cellulosic ethanol via biochemical processing poses a challenge for developers and implementers. Bioresources 4:1718–1735

    Google Scholar 

  • Vu VH, Pham TA, Kim K (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Microbiology 39:20–25

    CAS  Google Scholar 

  • Walter S, Schrempf H (1995) Studies of Streptomyces reticuli cel-1 (cellulase) gene expression in Streptomyces strains, Escherichia coli, and Bacillus subtilis. Appl Environ Microbiol 61:487–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi J, Du W, Zhong L (2013) Probing the interaction between cellulose and cellulase with a nanomechanical sensor. In: Van de Ven T, Godbout L (eds) Cellulose – medical, pharmaceutical and electronic applications. InTech, Rijeka, pp 125–140

    Google Scholar 

  • Xianzhen L (1997) Streptomyces cellulolyticus sp. nov., a new cellulolytic member of the genus Streptomyces. Int J Syst Bacteriol 47:443–445

    Article  Google Scholar 

  • Yanez-S M, Rojas J, Castro J, Ragauskas A, Baeza J, Freer J (2013) Fuel ethanol production from Eucalyptus globulus wood by autocatalized organosolv pretreatment ethanol–water and SSF. J Chem Technol Biotechnol 88:39–48

    Article  CAS  Google Scholar 

  • Yang B, Dai Z, Ding SY, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuel 2:421–450

    Article  CAS  Google Scholar 

  • Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:1–12

    Article  CAS  Google Scholar 

  • Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:1–16

    Article  CAS  Google Scholar 

  • Yao G, Wu R, Kan Q, Gao L, Liu M, Yang P, Du L, Li Z, Qu Y (2016) Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels 9:1–11

    Article  CAS  Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production and applications. In: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers. Wiley, Hoboken, pp 131–146

    Chapter  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresour Technol 101:9815–9818

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi H, Xu L, Zhu X, Li X (2015) Site-directed mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PLoS ONE 10:1–14

    Google Scholar 

  • Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C et al (2008) Interactions of the complete cellobiohydrolase I from Trichoderma reesei with microcrystalline cellulose Iβ. Cellulose 15:261–273

    Article  CAS  Google Scholar 

  • Zhuang J, Machant MA, Nokes SE, Strobel HJ (2007) Economic analysis of cellulase production methods for bioethanol. Appl Eng Agric 23:679–687

    Article  Google Scholar 

  • Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Lavarone AT, Cate JHD, Glass NL (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS 109:6012–6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, A., Aggarwal, N.K., Yadav, A. (2018). Microbial Cellulases: Role in Second-Generation Ethanol Production. In: Singh, J., Sharma, D., Kumar, G., Sharma, N. (eds) Microbial Bioprospecting for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-0053-0_8

Download citation

Publish with us

Policies and ethics