Skip to main content

Automated Lung Parenchyma Segmentation in the Presence of High Attenuation Patterns Using Modified Robust Spatial Kernel FCM

  • Conference paper
  • First Online:
Cognitive Computing and Information Processing (CCIP 2017)

Abstract

Employing an accurate lung segmentation procedure is an essential stride in any Computer Aided Diagnosis (CAD) system designed for lung pathology evaluation, which significantly affects the performance of the system. In this paper a fully automated Modified Robust Spatial Kernel Fuzzy C Means (MRSKFCM) algorithm is used for extracting the lung parenchyma affected with Diffuse Lung Disease (DLD). The algorithm comprises of two steps, the Robust Spatial Kernel Fuzzy C Means (RSKFCM) is applied to acquire the coarse lung segmentation in the first step and in the second step the results of coarse segmentation is improved using Convex Hull (CH) algorithm and morphological operations. The algorithm used demonstrates high segmentation results with Dice index of 0.9057 ± 0.025, Jaccard Index of 0.8561 ± 0.029 and Accuracy 0.9864 ± 0.002. The execution time for each slice is approximately 2.5 s. Based on segmentation results and the evaluation time, the algorithm used can be considered as one of the desirable method for the extracting lung parenchyma in the CAD system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, W.S.H.M.W., Zaki, W.M.D.W., Fauzi, M.F.A.: Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed. Eng. Online 14(1), 20 (2015)

    Article  Google Scholar 

  2. Aruna Kumar, S.V., Harish, B.S.: Segmenting medical images using computational intelligence technique. Int. J. Inf. Process. 9(1), 48–56 (2015)

    Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  5. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3, 326–334 (1965)

    Article  Google Scholar 

  6. Dalpiaz, G., Maffessanti, M.: Diffuse lung diseases. In: Guglielmi, G., Peh, W., Guermazi, A. (eds.) Geriatric Imaging, pp. 365–388. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35579-0_16

    Chapter  Google Scholar 

  7. Dash, J.K., Madhavi, V., Mukhopadhyay, S., Khandelwal, N., Kumar, P.: Segmentation of interstitial lung disease patterns in HRCT images. In: SPIE Medical Imaging, p. 94142R. International Society for Optics and Photonics (2015)

    Google Scholar 

  8. Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.A., Müller, H.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 36(3), 227–238 (2012)

    Article  Google Scholar 

  9. Doi, K.: Current status and future potential of computer-aided diagnosis in medical imaging. Br. J. Radiol. 78(Suppl. 1), s3–s19 (2005)

    Article  Google Scholar 

  10. Haider, C., Bartholmai, B.J., Holmes, D., Camp, J., Robb, R.A.: Quantitative characterization of lung disease. Comput. Med. Imaging Graph. 29(7), 555–563 (2005)

    Article  Google Scholar 

  11. Hutchinson, J., Fogarty, A., Hubbard, R., McKeever, T.: Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur. Respir. J. 46(3), 795–806 (2015)

    Article  Google Scholar 

  12. Jayaram, M., Fleyeh, H.: Convex hulls in image processing: a scoping review. Am. J. Intell. Syst. 6(2), 48–58 (2016)

    Google Scholar 

  13. Korfiatis, P., Kalogeropoulou, C., Karahaliou, A., Kazantzi, A., Skiadopoulos, S., Costaridou, L.: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med. Phys. 35(12), 5290–5302 (2008)

    Article  Google Scholar 

  14. Korfiatis, P., Skiadopoulos, S., Sakellaropoulos, P., Kalogeropoulou, C., Costaridou, L.: Automated 3d segmentation of lung fields in thin slice CT exploiting wavelet preprocessing. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 237–244. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_30

    Chapter  Google Scholar 

  15. Rogers, W., Ryack, B., Moeller, G.: Computer-aided medical diagnosis: literature review. Int. J. Biomed. Comput. 10(4), 267–289 (1979)

    Article  Google Scholar 

  16. Shi, Z., Zhou, P., He, L., Nakamura, T., Yao, Q., Itoh, H.: Lung segmentation in chest radiographs by means of Gaussian kernel-based FCM with spatial constraints. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery. FSKD 2009, vol. 3, pp. 428–432. IEEE (2009)

    Google Scholar 

  17. Sluimer, I., Prokop, M., Van Ginneken, B.: Toward automated segmentation of the pathological lung in CT. IEEE Trans. Med. Imaging 24(8), 1025–1038 (2005)

    Article  Google Scholar 

  18. Sluimer, I., Schilham, A., Prokop, M., Van Ginneken, B.: Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans. Med. Imaging 25(4), 385–405 (2006)

    Article  Google Scholar 

  19. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 29 (2015)

    Article  Google Scholar 

  20. Uchiyama, Y., Katsuragawa, S., Abe, H., Shiraishi, J., Li, F., Li, Q., Zhang, C.T., Suzuki, K., et al.: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med. Phys. 30(9), 2440–2454 (2003)

    Article  Google Scholar 

  21. Van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002)

    Article  Google Scholar 

  22. Van Rikxoort, E.V., Van Ginneken, B.: Automatic segmentation of the lungs and lobes from thoracic CT scans. In: Proceedings of the 4th international Workshop Pulmonary Image Anal, pp. 261–268 (2011)

    Google Scholar 

  23. Wang, J., Li, F., Li, Q.: Automated segmentation of lungs with severe interstitial lung disease in CT. Med. Phys. 36(10), 4592–4599 (2009)

    Article  Google Scholar 

  24. Xu, T., Mandal, M., Long, R., Cheng, I., Basu, A.: An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Comput. Med. Imaging Graph. 36(6), 452–463 (2012)

    Article  Google Scholar 

  25. Zwirewich, C.V., Mayo, J.R., Müller, N.: Low-dose high-resolution CT of lung parenchyma. Radiol. 180(2), 413–417 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, S., Vinod, D.S., Murthy, N. (2018). Automated Lung Parenchyma Segmentation in the Presence of High Attenuation Patterns Using Modified Robust Spatial Kernel FCM. In: Nagabhushan, T., Aradhya, V.N.M., Jagadeesh, P., Shukla, S., M.L., C. (eds) Cognitive Computing and Information Processing. CCIP 2017. Communications in Computer and Information Science, vol 801. Springer, Singapore. https://doi.org/10.1007/978-981-10-9059-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9059-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9058-5

  • Online ISBN: 978-981-10-9059-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics