Skip to main content

Pathnet: A Neuronal Model for Robotic Motion Planning

  • Conference paper
  • First Online:
Cognitive Computing and Information Processing (CCIP 2017)

Abstract

This paper proposes a new type of Multi-layered Artificial Neural Network (ANN) suitable for motion control of multi-joint robotic mechanisms with arbitrary Degrees of Freedom (DoF). Input layer classifies the incoming data using Auto Resonance Network (ARN) while higher levels implement Pathnet, a connection oriented neural network with Hebbian reinforcement learning capability. ARN networks grow with training input. Perturbation of ARN nodes allows the network to classify and recognize events with no previous history, Multilayer pathnets can recognize and recall temporal sequences. The network can memorize low cost paths and use parts of such segments in establishing new paths. We have used the system to control a multi segmented robotic system in R. Results of simulation presented in this paper encourage further explorations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saha, S.K.: Introduction to Robotics. McGrawHill, New Delhi (2008). ISBN 978-0070140011

    Google Scholar 

  2. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Department of Computer Science, University of Rochester, Research report - TR58, pp. 421–427 (1979)

    Google Scholar 

  3. Jha, P.: Inverse kinematic analysis of robot manipulators. Dissertation, National Institute of Technology, Rourkela (2015)

    Google Scholar 

  4. Tai, L., Ming, L.: Deep-learning in mobile robotics - from perception to control systems: a survey on why and why not. Cornell University Archives. arXiv:1612.07139v3 (2017)

  5. Veslin, E.Y., Dutra, M.S., Lengerke, O., Carreno, E.A., Tavera, M.J.M.: A hybrid solution for the inverse kinematic on a seven DOF robotic manipulator. IEEE Lat. Am. Trans. 12(2), 212–218 (2014)

    Article  Google Scholar 

  6. Zhou, L., Cook, G.: Path planning for robotic manipulators with redundant degrees of freedom. IEEE Trans. Ind. Electron. 38(6), 413–420 (1991)

    Article  Google Scholar 

  7. Kawasaki, H., Bito, T., Kanzaki, K.: An efficient algorithm for the model based adaptive control of robotic manipulators. IEEE Trans. Robot. Autom. 12(3), 496–501 (1996)

    Article  Google Scholar 

  8. Slotine, J.J.E., Li, W.: On adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 50–59 (1987)

    Article  Google Scholar 

  9. Duka, A.: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technol. 12, 20–27 (2014)

    Article  Google Scholar 

  10. Faigl, J.: An application of self-organizing map for multirobot multigoal path planning with minmax objective. Comput. Intell. Neurosci. 2016, Article ID 2720630 (2016). https://doi.org/10.1155/2016/2720630

  11. Martin, A.E., Gregg, R.D.: Incorporating human-like walking variability in HZD-based bipedal model. IEEE Trans. Robot. 32(4), 943–949 (2016)

    Article  Google Scholar 

  12. Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holland, O.: The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic systems. Int. J. Adv. Robot. Syst. 8(5), 69 (2011)

    Article  Google Scholar 

  13. He, H., McGinnity, T.M., Coleman, S., Gardiner, B.: Linguistic decision making for robot route learning. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 203–215 (2014)

    Article  Google Scholar 

  14. Zhang, J., Springenberg, J.T., Boedecker, J., Burgard, W.: Deep reinforcement learning with successor features for navigation across similar environments. arXiv:1612.05533 (2017)

  15. Zhang, Q., Li, M., Wang, X., Zhang, Y.: Reinforcement learning in robot path optimization. J. Softw. 7(3), 657–662 (2012)

    Google Scholar 

  16. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017(2), 1–13 (2017). https://doi.org/10.1155/2017/3296874. Article ID 3296874

    Article  Google Scholar 

  17. Aparanji, V.M., Wali, U.V., Aparna, R.: Robotic motion control using machine learning techniques. In: International Conference on 6th IEEE Communication and Signal Processing (ICCSP) Melmaravattur, April 2017. IEEE Xplore (2017, in press)

    Google Scholar 

  18. Aparanji, V.M., Wali. U.V., Aparna, R.: A novel neural network structure for motion control in joints. In: ICEECCOT, Mysore, pp 227–232 (2016). Also available from IEEE Xplore

    Google Scholar 

  19. Aparanji, V.M., Wali, U.V., Aparna, R.: Automated path search and optimization of robotic motion using hybrid ART-SOM neural networks. In: International Conference on Recent Advancement in Computer and Communication, Bhopal, May 2017, ICRAC-2017. LNNS. Springer, Heidelberg (2017, in press)

    Google Scholar 

  20. Stufflebeam, R.: Neurons, Synapses, Action Potentials, and Neurotransmission, Consortium on Congnitive Science Instruction (2008). http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php

  21. Verbny, Y., Zhang, C.L., Chiu, S.Y.: Coupling of calcium homeostasis to axonal sodium in axons of mouse optic nerve. J. Neurophysiol. 88(2), 802–816 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aparanji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aparanji, V.M., Wali, U.V., Aparna, R. (2018). Pathnet: A Neuronal Model for Robotic Motion Planning. In: Nagabhushan, T., Aradhya, V.N.M., Jagadeesh, P., Shukla, S., M.L., C. (eds) Cognitive Computing and Information Processing. CCIP 2017. Communications in Computer and Information Science, vol 801. Springer, Singapore. https://doi.org/10.1007/978-981-10-9059-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9059-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9058-5

  • Online ISBN: 978-981-10-9059-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics