Skip to main content

Modelling Details for Electric Field Simulations of Deep Brain Stimulation

  • Conference paper
  • First Online:
World Congress on Medical Physics and Biomedical Engineering 2018

Abstract

Deep brain stimulation is a well-established technique for symptomatic treatment of e.g. Parkinson’s disease and essential tremor. Computer simulations using the finite element method (FEM) are widely used to estimate the affected area around the DBS electrodes. For the reliability of the simulations, it is important to match used simulation parameters with experimental data. One such parameter is the electric field magnitude threshold EFt required for axon stimulation. Another is the conductivity of the perielectrode space (PES) around the electrode. At the acute stage after surgery the PES will be characterized by an increased conductivity due to inflammation and edema while the later chronic stage will be characterized by a lower conductivity due to gliosis and minor scar formation. In this study, the EFt and the electric conductivity of the PES have been estimated by comparing FEM simulations with clinical studies of activation distance, pulse length and electrode impedance. The resulting estimates are an EFt of 0.2 V/mm at the common pulse width of 60 µs and a chronaxie of 62 µs. Estimated electric conductivities for the PES are 0.14 S/m in the acute stage and 0.05 S/m in the chronic stage, assuming a PES width of 250 µm. These values are thus experimentally justified to use in FEM simulations of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blomstedt, P., Hariz, G. M., and Hariz, M. I., Pallidotomy versus pallidal stimulation, Parkinsonism Relat Disord, 12(5) pp. 296–301, (2006).

    Google Scholar 

  2. Schuurman, P. R., Bosch, D. A., Merkus, M. P., and Speelman, J. D., Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression, Mov Disord, 23(8) pp. 1146–53, (2008).

    Google Scholar 

  3. Eltahawy, H. A., Saint-Cyr, J., Giladi, N., Lang, A. E., and Lozano, A. M., Primary dystonia is more responsive than secondary dystonia to pallidal interventions: Outcome after pallidotomy or pallidal deep brain stimulation, Neurosurgery, 54(3) pp. 613–619, (2004).

    Google Scholar 

  4. Marin, C., Jimenez, A., Tolosa, E., Bonastre, M., and Bove, J., Bilateral subthalamic nucleus lesion reverses L-dopa-induced motor fluctuations and facilitates dyskinetic movements in hemiparkinsonian rats, Synapse, 51(2) pp. 140–50, (2004).

    Google Scholar 

  5. Galarreta, M. and Hestrin, S., Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex, Nat Neurosci, 1(7) pp. 587–94, (1998).

    Google Scholar 

  6. Urbano, F. J., Leznik, E., and Llinás, R. R., Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study, Thalamus & Related Systems, 1(4) pp. 371–378, (2002).

    Google Scholar 

  7. Brocker, D. T., Swan, B. D., So, R. Q., Turner, D. A., Gross, R. E., and Grill, W. M., Optimized temporal pattern of brain stimulation designed by computational evolution, Sci Transl Med, 9(371) 2017).

    Google Scholar 

  8. Geddes, L. A., Accuracy limitations of chronaxie values, IEEE Trans Biomed Eng, 51(1) pp. 176–81, (2004).

    Google Scholar 

  9. Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al., Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters, J Neurol Neurosurg Psychiatry, 71(2) pp. 215–9, (2001).

    Google Scholar 

  10. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., and Deisseroth, K., Optical deconstruction of parkinsonian neural circuitry, Science, 324(5925) pp. 354–9, (2009).

    Google Scholar 

  11. Hassler, R., Riechert, T., Mundinger, F., Umbach, W., and Ganglberger, J. A., Physiological observations in stereotaxic operations in extrapyramidal motor disturbances, Brain, 83 pp. 337–50, (1960).

    Google Scholar 

  12. Åström, M., Diczfalusy, E., Martens, H., and Wårdell, K., Relationship between Neural Activation and Electric Field Distribution during Deep Brain Stimulation, IEEE Transactions on Biomedical Engineering, 62(2) pp. 664–672, (2015).

    Google Scholar 

  13. Hemm, S., Pison, D., Alonso, F., Shah, A., Coste, J., Lemaire, J. J., et al., Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus, Front Hum Neurosci, 10 p. 577, (2016).

    Google Scholar 

  14. Alonso, F., Latorre, M. A., Göransson, N., Zsigmond, P., and Wårdell, K., Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study, Brain Sciences, 6(3) 2016).

    Google Scholar 

  15. Horn, A., Reich, M., Vorwerk, J., Li, N. F., Wenzel, G., Fang, Q. Q., et al., Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease, Annals of Neurology, 82(1) pp. 67–78, (2017).

    Google Scholar 

  16. Perez-Caballero, L., Perez-Egea, R., Romero-Grimaldi, C., Puigdemont, D., Molet, J., Caso, J. R., et al., Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs, Mol Psychiatry, 19(5) pp. 607–14, (2014).

    Google Scholar 

  17. Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., and Cui, X. T., Brain tissue responses to neural implants impact signal sensitivity and intervention strategies, ACS Chem Neurosci, 6(1) pp. 48–67, (2015).

    Google Scholar 

  18. Alonso, F., Hemm-Ode, S., and Wårdell, K., Influence on Deep Brain Stimulation from Lead Design, Operating Mode and Tissue Impedance Changes – A Simulation Study, Brain Disorders & Therapy, 4(3) 2015).

    Google Scholar 

  19. Yousif, N., Bayford, R., Bain, P. G., and Liu, X., The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: A computational study, Brain Research Bulletin, 74(5) pp. 361–368, (2007).

    Google Scholar 

  20. Nielsen, M. S., Bjarkam, C. R., Sorensen, J. C., Bojsen-Moller, M., Sunde, N. A., and Ostergaard, K., Chronic subthalamic high-frequency deep brain stimulation in Parkinson’s disease - a histopathological study, European Journal of Neurology, 14(2) pp. 132–138, (2007).

    Google Scholar 

  21. Haberler, C., Alesch, F., Mazal, P. R., Pilz, P., Jellinger, K., Pinter, M. M., et al., No tissue damage by chronic deep brain stimulation in Parkinson’s disease, Annals of Neurology, 48(3) pp. 372–376, (2000).

    Google Scholar 

  22. Kuncel, A. M., Cooper, S. E., and Grill, W. M., A method to estimate the spatial extent of activation in thalamic deep brain stimulation, Clin Neurophysiol, 119(9) pp. 2148–58, (2008).

    Google Scholar 

  23. Lungu, C., Malone, P., Wu, T., Ghosh, P., McElroy, B., Zaghloul, K., et al., Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue-electrode interface in deep brain stimulation patients, J Neurol Neurosurg Psychiatry, 85(7) pp. 816–9, (2014).

    Google Scholar 

  24. Hemm, S., Mennessier, G., Vayssiere, N., Cif, L., and Coubes, P., Co-registration of stereotactic MRI and isofieldlines during deep brain stimulation, Brain Res Bull, 68(1–2) pp. 59-61, (2005).

    Google Scholar 

  25. McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., and Vitek, J. L., Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus, Clin Neurophysiol, 115(3) pp. 589–95, (2004).

    Google Scholar 

  26. Liewald, D., Miller, R., Logothetis, N., Wagner, H. J., and Schuz, A., Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque, Biological Cybernetics, 108(5) pp. 541–557, (2014).

    Google Scholar 

  27. Mathai, A., Wichmann, T., and Smith, Y., More Than Meets the Eye-Myelinated Axons Crowd the Subthalamic Nucleus, Movement Disorders, 28(13) pp. 1811–1815, (2013).

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Swedish Research Council (Vetenskapsrådet, Dnr. 2016-03564), the Swedish Foundation for Strategic Research (Project BD15-0032), and the Knut and Alice Wallenberg Foundation (Project Seeing Organ Function). The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes D. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansson, J.D., Alonso, F., Wårdell, K. (2019). Modelling Details for Electric Field Simulations of Deep Brain Stimulation. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds) World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, vol 68/1. Springer, Singapore. https://doi.org/10.1007/978-981-10-9035-6_120

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9035-6_120

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9034-9

  • Online ISBN: 978-981-10-9035-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics