Skip to main content

Endophytes: Emerging Tools for the Bioremediation of Pollutants

  • Chapter
  • First Online:
Book cover Emerging and Eco-Friendly Approaches for Waste Management

Abstract

Pollutants are toxic to living organisms and the environment. Removal of these pollutants using biological agents has been attempted, with many of these successfully performed by a variety of bacteria and fungi. In recent years, a group of microorganisms known as endophytes have been explored for their bioremediation potential. Endophytes are microorganisms that exist in the tissues of the host plant and have traditionally been studied for their plant growth-promoting properties, biocontrol activities, and production of bioactive compounds. Their bioremediation potential is new and has tremendous room for research and development. Endophytes are, therefore, interesting microorganisms in our effort to discover new tools for the bioremediation of pollutants. In this chapter, the nature of endophytes, their tolerance to pollutants, and their application and mechanisms in removing pollutants such as toxic metals and triphenylmethane dyes are discussed. Examples of known endophytic species are also highlighted, and the methods in bioprospecting for these endophytic isolates are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Baki AS, Dkhil MA, Al-Quraishy S (2011) African bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah. J Biotechnol 10:2541–2547

    CAS  Google Scholar 

  • Adekunle A, Oluyode T (2005) Biodegradation of crude petroleum and petroleum products by fungi isolated from two oil seeds (melon and soybean). J Environ Biol 26:37–42

    CAS  Google Scholar 

  • Akar E, Altinişik A, Seki Y (2013) Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng 52:19–27. https://doi.org/10.1016/j.ecoleng.2012.12.032

    Article  Google Scholar 

  • Arunarani A, Chandran P, Ranganathan BV et al (2013) Bioremoval of basic violet 3 and acid blue 93 by pseudomonas putida and its adsorption isotherms and kinetics. Colloids Surf B Biointerfaces 102:379–384. https://doi.org/10.1016/j.colsurfb.2012.08.049

    Article  CAS  Google Scholar 

  • Asfaram A, Ghaedi M, Ghezelbash GR et al (2016) Biosorption of malachite green by novel biosorbent Yarrowia lipolytica isf7: application of response surface methodology. J Mol Liq 214:249–258. https://doi.org/10.1016/j.molliq.2015.12.075

    Article  CAS  Google Scholar 

  • Ayed L, Chaieb K, Cheref A et al (2008) Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World J Microbiol Biotechnol 25:705–711. https://doi.org/10.1007/s11274-008-9941-x

    Article  CAS  Google Scholar 

  • Bahafid W, Joutey NT, Sayel H et al (2013) Chromium adsorption by three yeast strains isolated from sediments in Morocco. Geomicrobiol J 30:422–429. https://doi.org/10.1080/01490451.2012.705228

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–337

    Article  CAS  Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S et al (2002) Entrapment of Lentinussajorcaju into Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72:63–76

    Article  CAS  Google Scholar 

  • Benfares R, Seridi H, Belkacem Y et al (2015) Heavy metal bioaccumulation in brown algae Cystoseira compressa in Algerian Coasts, Mediterranean Sea. Environ Process 2:429–439. https://doi.org/10.1007/s40710-015-0075-5

    Article  CAS  Google Scholar 

  • Bera S, Sharma VP, Dutta S et al (2016) Biological decolorization and detoxification of malachite green from aqueous solution by Dietzia maris NIT-D. J Taiwan Inst Chem Eng 67:271–284. https://doi.org/10.1016/j.jtice.2016.07.028

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2017) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22

    Chapter  Google Scholar 

  • Bilal M, Shah JA, Ashfaq TQ et al (2013) Waste biomass adsorbents for copper removal from industrial wastewater- a review. J Hazard Mater 263:322–333

    Article  CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Davis AP et al (2015) Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens, and Alyssum murale in pH adjusted biosolids amended soils. Int J Phytoremediation 17:25–39. https://doi.org/10.1080/15226514.2013.828015

    Article  CAS  Google Scholar 

  • Carro L, Barriada JL, Herrero R, Sastre de Vicente ME (2015) Interaction of heavy metals with Ca-pretreated Sargassum muticum algal biomass: characterization as a cation exchange process. Chem Eng J 264:181–187. https://doi.org/10.1016/j.cej.2014.11.079

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Imp 17:326–342

    Article  CAS  Google Scholar 

  • Chaturvedi V, Bhange K, Bhatt R et al (2013) Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers. J Environ Chem Eng 1:1205–1213. https://doi.org/10.1016/j.jece.2013.09.009

    Article  CAS  Google Scholar 

  • Chen SH, Ting ASY (2015a) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manag 150:274–280. https://doi.org/10.1016/j.jenvman.2014.09.014

    Article  CAS  Google Scholar 

  • Chen SH, Ting ASY (2015b) Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int Biodeterior Biodegrad 103:1–7. https://doi.org/10.1016/j.ibiod.2015.04.004

    Article  CAS  Google Scholar 

  • Cheng J, Qiu H, Chang Z et al (2016) The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springerplus 5:1290. https://doi.org/10.1186/s40064-016-2963-1

    Article  CAS  Google Scholar 

  • Cheremisinoff PN (1995) Handbook of water and wastewater treatment technology. Marcel Dekker, New York

    Google Scholar 

  • Chew SY, Ting ASY (2015) Common filamentous Trichoderma asperellum for effective removal of triphenylmethane dyes. Desalin Water Treat 57:13534–13539. https://doi.org/10.1080/19443994.2015.1060173

    Article  CAS  Google Scholar 

  • Chinalia FA, Reghali-Seleghin MH, Correa EM (2007) 2,4-D toxicity, cause, effect and control. Terr Aquat Environ Toxicol 1:24–33

    Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham, pp 409–435

    Chapter  Google Scholar 

  • Cid H, Ortiz C, Pizarro J et al (2015) Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption 21:645–658. https://doi.org/10.1007/s10450-015-9715-3

    Article  CAS  Google Scholar 

  • Collins JS, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, Toronto, p 31

    Google Scholar 

  • Congeevaram S, Dhanarani S, Park J et al (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  Google Scholar 

  • Cozma D, Tanase C, Tunsu C et al (2010) Statistical study of heavy metal distribution in the specific mushrooms from the sterile dumps Calimani area. Environ Eng Manag J 9:659–665

    Article  CAS  Google Scholar 

  • Cvijovic M, Djurdjevic P, Cvetkovic S et al (2010) A case study of industrial water polluted with chromium (VI) and its impact to river recipient in western Serbia. Environ Eng Manag J 9:45–49

    Article  CAS  Google Scholar 

  • Dadi D, Stellmacher T, Senbeta F et al (2017) Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State. Environ Monit Assess 189:1. https://doi.org/10.1007/s10661-016-5694-4

    Article  CAS  Google Scholar 

  • Daneshvar N, Khataee AR, Rasoulifard MH et al (2007) Biodegradation of dye solution containing Malachite Green: optimization of effective parameters using Taguchi method. J Hazard Mater 143:214–219. https://doi.org/10.1016/j.jhazmat.2006.09.016

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals- a review. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2000) A review of the biochemistry of heavy metal biosorption by brown algae. Water Resour 37:4311–4330

    Google Scholar 

  • Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresour Technol 121:342–347

    Article  CAS  Google Scholar 

  • Deng D, Guo J, Zeng G et al (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad 62:263–269. https://doi.org/10.1016/j.ibiod.2008.01.017

    Article  CAS  Google Scholar 

  • Deng Z, Cao L, Huang H et al (2011) Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185:717–724

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y et al (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 31:2346–2357

    Article  CAS  Google Scholar 

  • Du LN, Wang S, Li G et al (2011) Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology 20:438–446. https://doi.org/10.1007/s10646-011-0595-3

    Article  CAS  Google Scholar 

  • Du L-N, Zhao M, Li G et al (2013) Biodegradation of malachite green by Micrococcus sp. strain BD15: biodegradation pathway and enzyme analysis. Int Biodeterior Biodegrad 78:108–116. https://doi.org/10.1016/j.ibiod.2012.12.011

    Article  CAS  Google Scholar 

  • Dursun AY, Uslu G, Tepe O et al (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15:87–92

    Article  CAS  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A et al (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  CAS  Google Scholar 

  • El-Gendy MMA, Hassanein NM, El-Hay IHA et al (2011) Evaluation of some fungal endophytes of plant potentiality as low-cost adsorbents for heavy metals uptake from aqueous solution. Aust J Basic Appl Sci 5:466–473

    CAS  Google Scholar 

  • Eman ZG (2012) Production and characteristics of a heavy metals removing bioflocculant produced by Pseudomonas aeruginosa. Pol J Microbiol 61:281–289

    Google Scholar 

  • Erto A, Giraldo L, Lancia A et al (2013) A comparison between a low-cost sorbent and an activated carbon for the adsorption of heavy metals from water. Water Air Soil Pollut 224:1531. https://doi.org/10.1007/s11270-013-1531-3

    Article  CAS  Google Scholar 

  • Ezzouhri L, Castro E, Moya M et al (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3:35–48

    CAS  Google Scholar 

  • Fallah AA, Barani A (2014) Determination of malachite green residues in farmed rainbow trout in Iran. Food Control 40:100–105. https://doi.org/10.1016/j.foodcont.2013.11.045

    Article  CAS  Google Scholar 

  • Fu X-Y, Zhao W, Xiong A-S et al (2013) Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis. Appl Microbiol Biotechnol 97:1799–1806. https://doi.org/10.1007/s00253-012-4106-0

    Article  CAS  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC et al (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454

    Article  Google Scholar 

  • Gangadevi V, Muthumary J (2014) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. IJSER 5:1087–1094

    Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M et al (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Geethakrishnan T, Sakthivel P, Palanisamy PK (2015) Triphenylmethane dye-doped gelatin films for low-power optical phase-conjugation. Opt Commun 335:218–223. https://doi.org/10.1016/j.optcom.2014.09.033

    Article  CAS  Google Scholar 

  • Ghaedi M, Hajati S, Barazesh B et al (2013) Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of brilliant green and methylene blue. J Ind Eng Chem 19:227–233. https://doi.org/10.1016/j.jiec.2012.08.006

    Article  CAS  Google Scholar 

  • Göksungur Y, Dagbagli S, Ucan A et al (2005) Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J Chem Technol Biotechnol 80:819–827

    Article  CAS  Google Scholar 

  • Gomez LM, Colpas-Castillo F, Fernandez-Maestre R (2014) Cation exchange for mercury and cadmium of xanthated, sulfonated, activated and non-treated subbituminous coal, commercial activated carbon and commercial synthetic resin: effect of pre-oxidation on xanthation of subbituminous coal. Int J Coal Sci Technol 1:235–240. https://doi.org/10.1007/s40789-014-0033-2

    Article  Google Scholar 

  • Gorzin F, Ghoreyshi AA (2013) Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (VI) from aqueous solution: equilibrium, kinetics, thermodynamics and desorption studies. Korean J Chem Eng 30:1594–1602. https://doi.org/10.1007/s11814-013-0079-7

    Article  CAS  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T et al (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:242. https://doi.org/10.1007/s13205-016-0560-1

    Article  CAS  Google Scholar 

  • Guo H, Luo S, Chen L et al (2010) Bioremediation of heavy metals by growing hyper accumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605

    Article  CAS  Google Scholar 

  • Gupta N, Kushwaha AK, Chattopadhyaya MC (2016) Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab J Chem 9:S707–S716. https://doi.org/10.1016/j.arabjc.2011.07.021

    Article  CAS  Google Scholar 

  • Hamad H, Ezzeddine Z, Kanaan S et al (2016) A novel modification and selective route for the adsorption of Pb2+ by oak charcoal functionalized with glutaraldehyde. Adv Powder Technol 27:631–637. https://doi.org/10.1016/j.apt.2016.02.019

    Article  CAS  Google Scholar 

  • Hamid AA, Aiyelaagbe OO, Balogun GA (2011) Herbicides and its application. Adv Nat Appl Sci 5:201–213

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • He H, Ye Z, Yang D et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  Google Scholar 

  • Ho YN, Mathew DC, Hsiao SC et al (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 15:43–49

    Article  CAS  Google Scholar 

  • Honfi K, Tálos K, Kőnig-Péter A et al (2016) Copper(II) and phenol adsorption by cell surface treated Candida tropicalis cells in aqueous suspension. Water Air Soil Pollut 227:61. https://doi.org/10.1007/s11270-016-2751-0

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Xing J et al (2007) A potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Iram S, Shabbir R, Zafar H et al (2015) Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng 40:1867–1873. https://doi.org/10.1007/s13369-015-1702-1

    Article  CAS  Google Scholar 

  • Işik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192. https://doi.org/10.1016/S0032-9592(02)00282-0

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jasińska A, Paraszkiewicz K, Sip A et al (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum – mechanistic study and process optimization. Bioresour Technol 194:43–48. https://doi.org/10.1016/j.biortech.2015.07.008

    Article  CAS  Google Scholar 

  • Jegan J, Vijayaraghavan J, Bhagavathi PT et al (2016) Application of seaweeds for the removal of cationic dye from aqueous solution. Desalin Water Treat 57:25812–25821. https://doi.org/10.1080/19443994.2016.1151835

    Article  CAS  Google Scholar 

  • Jutakridsada P, Prajaksud C, Kuboonya-Aruk L et al (2015) Adsorption characteristics of activated carbon prepared from spent ground coffee. Clean Techn Environ Policy 18:639–645. https://doi.org/10.1007/s10098-015-1083-x

    Article  CAS  Google Scholar 

  • Kalyani S, Rao PS, Krishnaiah A (2004) Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57:1225–1229

    Article  CAS  Google Scholar 

  • Kavand M, Kaghazchi T, Soleimani M (2014) Optimization of parameters for competitive adsorption of heavy metal ions (Pb+2, Ni+2, Cd+2) onto activated carbon. Korean J Chem Eng 31:692–700. https://doi.org/10.1007/s11814-013-0280-8

    Article  CAS  Google Scholar 

  • Khalil MMH, Abou-Shanab RAI, Salem ANM et al (2016) Biosorption of trivalent chromium using Ca-alginate immobilized and alkali-treated biomass. J Chem Sci Technol. https://doi.org/10.5963/JCST0501001

  • Khan MU, Sessitsch A, Harris M et al (2015) Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00755

  • Kim TU, Cho SH, Han JH et al (2012) Diversity and physiological properties of root endophytic Actinobacteria in native herbaceous plants of Korea. J Microbiol 50:50–57

    Article  CAS  Google Scholar 

  • Kim WK, Shim T, Kim YS et al (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270. https://doi.org/10.1016/j.biortech.2013.03.186

    Article  CAS  Google Scholar 

  • Kinoshita KF, Bolleman J, Campbell MP et al (2013) Introducing glycomics data into the semantic web. J Biomed Semant 3:39–43

    Article  Google Scholar 

  • Kiran MG, Pakshirajan K, Das G (2017) Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization. J Hazard Mater 324:62–70. https://doi.org/10.1016/j.jhazmat.2015.12.042

    Article  CAS  Google Scholar 

  • Koçer O, Acemioğlu B (2015) Adsorption of basic green 4 from aqueous solution by olive pomace and commercial activated carbon: process design, isotherm, kinetic and thermodynamic studies. Desalin Water Treat 57:16653–16669. https://doi.org/10.1080/19443994.2015.1080194

    Article  CAS  Google Scholar 

  • Kousha M, Farhadian O, Dorafshan S et al (2013) Optimization of malachite green biosorption by green microalgae-Scenedesmus quadricauda and Chlorella vulgaris: application of response surface methodology. J Taiwan Inst Chem Eng 44:291–294. https://doi.org/10.1016/j.jtice.2012.10.009

    Article  CAS  Google Scholar 

  • Kristanti RA, Fikri Ahmad Zubir MM, Hadibarata T (2016) Biotransformation studies of cresol red by Absidia spinosa M15. J Environ Manag 172:107–111. https://doi.org/10.1016/j.jenvman.2015.11.017

    Article  CAS  Google Scholar 

  • Kuang X, Fang Z, Wang S et al (2015) Effects of cadmium on intracellular cation homoeostasis in the yeast Saccharomyces cerevisiae. Toxicol Environ Chem 97:922–930. https://doi.org/10.1080/02772248.2015.1074689

    Article  CAS  Google Scholar 

  • Kück U, Pöggeler S, Nowrousian M et al (2009) Sordaria macrospora, a model system for fungal development. In: Anke T, Weber D (eds) Physiology and genetics: selected basic and applied aspects. Springer, Berlin/Heidelberg, pp 17–39. https://doi.org/10.1007/978-3-642-00286-1_2

    Chapter  Google Scholar 

  • Kus E, Eroglu H (2015) Genotoxic and cytotoxic effects of sunset yellow and brilliant blue, colorant food additives, on human blood lymphocytes. Pak J Pharm Sci 28:227–230

    CAS  Google Scholar 

  • Lamb DT, Naidu R, Ming H et al (2012) Copper phytotoxicity in native and agronomical plant species. Ecotoxicol Environ Saf 85:23–239

    Article  CAS  Google Scholar 

  • Lee JC, Son YO, Pratheeshkumar P et al (2012) Oxidative stress and metal carcinogenesis. Free Radic Bil Med 53:742–757

    Article  CAS  Google Scholar 

  • Leng L, Yuan X, Zeng G et al (2015) Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155:77–85. https://doi.org/10.1016/j.fuel.2015.04.019

    Article  CAS  Google Scholar 

  • Li HY, Li DW, He CM et al (2011) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol. https://doi.org/10.1016/j.funeco.2011.06.002

  • Li X, Li W, Chu L et al (2016) Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides: a hyperaccumulator from Pb-Zn contaminated soils. J Plant Interact 11:186–192

    Article  CAS  Google Scholar 

  • Liang X, Csetenyi L, Gadd GM (2016) Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiol J 33:294–307. https://doi.org/10.1080/01490451.2015.1051639

    Article  CAS  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int. https://doi.org/10.1155/2014/503784

  • Lim LBL, Priyantha N, Mohamad Zaidi NAH (2016) A superb modified new adsorbent, Artocarpus odoratissimus leaves, for removal of cationic methyl violet 2B dye. Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-5969-7

  • Limcharoensuk T, Sooksawat N, Sumarnrote A et al (2015) Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand. Ecotoxicol Environ Saf 122:322–330. https://doi.org/10.1016/j.ecoenv.2015.08.013

    Article  CAS  Google Scholar 

  • Lombi E, Gerzabek MH (1998) Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge. Commun Soil Sci Plant Anal 29:2545–2556

    Article  CAS  Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez MC, Esparza-Garcia FJ et al (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163:829–834. https://doi.org/10.1016/j.jhazmat.2008.07.034

    Article  CAS  Google Scholar 

  • Lucova M, Hojerova J, Pazourekova S et al (2013) Absorption of triphenylmethane dyes brilliant blue and patent blue through intact skin, shaven skin and lingual mucosa from daily life products. Food Chem Toxicol 52:19–27. https://doi.org/10.1016/j.fct.2012.10.027

    Article  CAS  Google Scholar 

  • Luo S, Chen L, Chen J et al (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd hyper accumulator Solanumnigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  Google Scholar 

  • Luo S, Li X, Chen L et al (2014) Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chem Eng J 239:312–321

    Article  CAS  Google Scholar 

  • Malekzadeh F, Latifi AM, Shahamat M et al (2002) Effects of selected physical and chemical parameters on uranium uptake by the bacterium Chryseomonas MGF-48. World J Microbiol Biotechnol 18:599–602

    Article  CAS  Google Scholar 

  • Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. In: de Voogt WP (ed) Reviews of environmental contamination and toxicology, vol 237. Springer, Cham, pp 71–104. https://doi.org/10.1007/978-3-319-23573-8_4

    Chapter  Google Scholar 

  • Martins LR, Rodrigues JAV, Adarme OFH et al (2017) Optimization of cellulose and sugarcane bagasse oxidation: application for adsorptive removal of crystal violet and auramine-O from aqueous solution. J Colloid Interface Sci 494:223–241. https://doi.org/10.1016/j.jcis.2017.01.085

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, Van der Lelie D et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  Google Scholar 

  • Mekhalif T, Guediri K, Reffas A et al (2016) Effect of acid and alkali treatments of a forest waste, Pinus brutia cones, on adsorption efficiency of methyl green. J Dispers Sci Technol 38:463–471. https://doi.org/10.1080/01932691.2016.1178585

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C 34(1):1–34

    Article  CAS  Google Scholar 

  • Moat AG, Foster JW, Spector MP (2003) Microbial physiology. Wiley, Canada

    Google Scholar 

  • Mohee R, Mudhoo A (eds) (2012) Bioremediation and sustainability: research and applications. Wiley, Canada

    Google Scholar 

  • Muthezhilan R, Vinoth S, Gopi K et al (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J ChemTech Res 6:4154–4160

    CAS  Google Scholar 

  • Nagda G, Ghole V (2008) Utilization of lignocellulosic waste from bidi industry for removal of dye from aqueous solution. Int J Environ Res Public Health 2:385–390

    Google Scholar 

  • Nandi R, Laskar S, Saha B (2016) Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed. https://doi.org/10.1007/s11164-016-2719-0

  • Nath J, Ray L (2015) Biosorption of Malachite green from aqueous solution by dry cells of Bacillus cereus M116 (MTCC 5521). J Environ Chem Eng 3:386–394. https://doi.org/10.1016/j.jece.2014.12.022

    Article  CAS  Google Scholar 

  • Neupane S, Ramesh ST, Gandhimathi R et al (2014) Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalin Water Treat 54:2041–2054. https://doi.org/10.1080/19443994.2014.903867

    Article  CAS  Google Scholar 

  • Owamah HI (2013) Biosorptive removal of Pb(II) and Cu(II) from wastewater using activated carbon from cassava peels. J Mater Cycles Waste 16:347–358. https://doi.org/10.1007/s10163-013-0192-z

    Article  CAS  Google Scholar 

  • Patil SM, Chandanshive VV, Rane NR et al (2016) Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation. Environ Res 146:340–349. https://doi.org/10.1016/j.envres.2016.01.019

    Article  CAS  Google Scholar 

  • Przystas W, Zablocka-Godlewska E, Grabinska-Sota E (2012) Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. Water Air Soil Pollut 223:1581–1592. https://doi.org/10.1007/s11270-011-0966-7

    Article  CAS  Google Scholar 

  • Przystas W, Zablocka-Godlewska E, Grabinska-Sota E (2015) Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Braz J Microbiol 46:415–424. https://doi.org/10.1590/S1517-838246246220140167

    Article  Google Scholar 

  • Pundir R, Rana S, Kaur A et al (2014) Bioprospecting potential of endophytic bacteria isolated from indigenous plants of Ambala (Haryana, India). Int J Pharma Sci Res 5. https://doi.org/10.13040/ijpsr.0975-8232.5(6).2309–19

  • Radha KV, Regupathi I, Arunagiri A et al (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40:3337–3345. https://doi.org/10.1016/j.procbio.2005.03.033

    Article  CAS  Google Scholar 

  • Rehman R, Mahmud T, Irum M (2015) Brilliant green dye elimination from water using Psidium guajava leaves and Solanum tuberosum peels as adsorbents in environmentally benign way. J Chem 2015:1–8. https://doi.org/10.1155/2015/126036

    Article  CAS  Google Scholar 

  • Rhee YJ, Hillier S, Gadd GM (2016) A new lead hydroxycarbonate produced during transformation of lead metal by the soil fungus Paecilomyces javanicus. Geomicrobiol J 33:250–260. https://doi.org/10.1080/01490451.2015.1076544

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van VE et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  Google Scholar 

  • Safarikova M, Ptackova L, Kibrikova I et al (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59:831–835. https://doi.org/10.1016/j.chemosphere.2004.10.062

    Article  CAS  Google Scholar 

  • Santos CM, Dweck J, Viotto RS et al (2015) Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresour Technol 196:469–479. https://doi.org/10.1016/j.biortech.2015.07.114

    Article  CAS  Google Scholar 

  • Saratale G, Kalme S, Govindwar S (2006) Decolorisation of textile dyes by Aspergillus ochraceus (NCIM-1146). Indian J Biotechnol 5:407–410

    CAS  Google Scholar 

  • Sathish L, Pavithra N, Ananda K (2012) Antimicrobial activity and biodegrading enzymes of endophytic fungi from eucalyptus. Int J Pharm Sci Res 3:2574–2583

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM et al (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  CAS  Google Scholar 

  • Seth PK, Jaffery FN, Khanna VK (2000) Toxicology. Indian J Pharm 32:134–151

    Google Scholar 

  • Shehzadi M, Afzal M, Khan MU et al (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159. https://doi.org/10.1016/j.watres.2014.03.064

    Article  CAS  Google Scholar 

  • Sheng X, Xia J, Jiang C et al (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Shi X, Liu Q, Ma J et al (2015) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288. https://doi.org/10.1007/s10529-015-1914-1

    Article  CAS  Google Scholar 

  • Shilpa S, Shikha R (2015) Biodegradation of dye reactive black-5 by a novel bacterial endophyte. Int Res J Env Sci 4:44–53

    CAS  Google Scholar 

  • Sidhu A, Agrawal S, Sable V et al (2014) Isolation of Colletotrichum gloeosporioides gr., a novel endophytic laccase producing fungus from the leaves of a medicinal plant, Piper betle. Int J Sci Eng Res 5:1087–1096

    Google Scholar 

  • Sim CSF, Ting ASY (2017a) Metal biosorption in single- and multi-metal solutions by biosorbents: indicators of efficacy in natural wastewater. Clean Soil Air Water. https://doi.org/10.1002/clen.201600049

  • Sim CSF, Ting ASY (2017b) FTIR and kinetic modelling of fungal biosorbents Trichoderma asperellum for the removal of Pb(II), Cu(II), Zn(II) and Cd(II) from multi-metal solutions. Desalination Water Treat 63:167–171

    Article  CAS  Google Scholar 

  • Sim CSF, Tan WS, Ting ASY (2016) Endophytes from Phragmites for metal removal: evaluating their metal tolerance, adaptive tolerance behaviour and biosorption efficacy. Desalin Water Treat 57:6959–6966. https://doi.org/10.1080/19443994.2015.1013507

    Article  CAS  Google Scholar 

  • Sing NN, Husaini A, Zulkharnain A et al (2017) Decolourisation capabilities of Ligninolytic enzymes produced by Marasmius cladophyllus UMAS MS8 on Remazol brilliant blue R and other azo dyes. Biomed Res Int 2017:1325754. https://doi.org/10.1155/2017/1325754

    Article  CAS  Google Scholar 

  • Singh G, Singh N, Marwaha TS (2009) Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol Mol Biol Plants 15:87–92

    Article  CAS  Google Scholar 

  • Singh A, Manju, Rani S et al (2012) Malachite green dye decolorization on immobilized dead yeast cells employing sequential design of experiments. Ecol Eng 47:291–296. https://doi.org/10.1016/j.ecoleng.2012.07.001

    Article  Google Scholar 

  • Song Y, Fang H, Xu H et al (2016) Treatment of wastewater containing crystal violet using walnut Shell. J Residuals Sci Technol 13:243–249. https://doi.org/10.12783/issn.1544-8053/13/4/1

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Sun J, Zheng M, Lu Z et al (2017) Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem. https://doi.org/10.1016/j.procbio.2017.01.030

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortune, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Thakur IS (2011) Environmental biotechnology: basic concepts and applications. I.K. International, New Delhi

    Google Scholar 

  • Ting ASY (2014) Biosourcing endophytes as biocontrol agents of wilt diseases. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 283–300

    Chapter  Google Scholar 

  • Ting ASY, Jioe E (2016) In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biol Control 96:57–63

    Article  CAS  Google Scholar 

  • Ting ASY, Lee MVJ, Chow YY et al (2016) Novel exploration of endophytic Diaporthe sp. for the biosorption and biodegradation of Triphenylmethane dyes. Water Air Soil Pollut 227:109. https://doi.org/10.1007/s11270-016-2810-6

    Article  CAS  Google Scholar 

  • Tseng R-L, Wu P-H, Wu F-C et al (2011) Half-life and half-capacity concentration approach for the adsorption of 2,4-dichlorophenol and methylene blue from water on activated carbons. J Taiwan Inst Chem Eng 42:312–319. https://doi.org/10.1016/j.jtice.2010.07.002

    Article  CAS  Google Scholar 

  • Uçar G, Bakircioglu D, Kurtulus YB (2014) Determination of metal ions in water and tea samples by flame-AAS after preconcentration using sorghum in nature form and chemically activated. J Anal Chem 69:420–425. https://doi.org/10.1134/s1061934814050098

    Article  Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Velpandian T, Saha K, Ravi AK et al (2007) Ocular hazards of the colors used during the festival-of-colors (Holi) in India – malachite green toxicity. J Hazard Mater 139:204–208. https://doi.org/10.1016/j.jhazmat.2006.06.046

    Article  CAS  Google Scholar 

  • Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometall 59:203–216

    Article  CAS  Google Scholar 

  • Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M et al (2012) Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JP (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/. Accessed 9 Feb 2017

  • Wu Y, Xiao X, Xu C et al (2013) Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Appl Microbiol Biotechnol 97:7439–7446. https://doi.org/10.1007/s00253-012-4476-3

    Article  CAS  Google Scholar 

  • Xiao X, Luo S, Zeng G et al (2010) Biosorption of cadmium by endophytic fungus (EF) Micro sphaeropsis sp. LSE10 isolated from cadmium hyper accumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  Google Scholar 

  • Xin S, Zeng Z, Zhou X et al (2017) Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. J Hazard Mater 324:365–372. https://doi.org/10.1016/j.jhazmat.2016.10.070

    Article  CAS  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press/Taylor & Francis Group, Boca Raton, p 813

    Google Scholar 

  • Yang SK, Tan N, Yan XM et al (2013) Thorium (IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar Pollut Bull 74:213–219

    Article  CAS  Google Scholar 

  • Yang J, Pan X, Zhao C, Mou S, Achal V, Al-Misned FA, Mortuza MG, Gadd GM (2016) Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiol J 33:261–266. https://doi.org/10.1080/01490451.2015.1068889

    Article  CAS  Google Scholar 

  • Young CA, Felitti S, Shields K (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  Google Scholar 

  • Zablocka-Godlewska E, Przystas W, Grabinska-Sota E (2015) Dye decolourisation using two Klebsiella strains. Water Air Soil Pollut 226:2249. https://doi.org/10.1007/s11270-014-2249-6

    Article  CAS  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Liu M et al (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632

    Article  Google Scholar 

  • Zhang Y, He L, Chen Z et al (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    Article  CAS  Google Scholar 

  • Zhou F, Cheng Y, Gan L et al (2014) Burkholderia vietnamiensis C09V as the functional biomaterial used to remove crystal violet and Cu(II). Ecotoxicol Environ Saf 105:1–6. https://doi.org/10.1016/j.ecoenv.2014.03.028

    Article  CAS  Google Scholar 

  • Zhuo R, He F, Zhang X et al (2015) Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochem Eng J 93:63–72. https://doi.org/10.1016/j.bej.2014.09.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the research funding provided by the Malaysian Ministry of Higher Education under the FRGS grant scheme (FRGS/2/2013/STWN01/MUSM/02/2) and to the Monash University Malaysia for the funds and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Su Yien Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sim, C.S.F., Chen, S.H., Ting, A.S.Y. (2019). Endophytes: Emerging Tools for the Bioremediation of Pollutants. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_10

Download citation

Publish with us

Policies and ethics