Skip to main content
  • 1991 Accesses

Abstract

An algal bloom is a rapid and prolific increase in phytoplankton biomass in freshwater, brackish water or marine water systems and is recognized by the discolouration in the water based on the phytopigments in the algal cells (either innocuous or toxic). Algae can be considered to be blooming at widely varied concentrations, reaching millions of cells per millilitre, or tens of thousands of cells per litre. Occurrence of bloom and its persistence are a complex environmental process involving multiple factors such as anthropogenic nutrient (eutrophication), solar radiation, temperature, current patterns and other associated factors. This natural but stochastic event leads to severe ecological health hazards, degradation of water quality and productivity and pelagic community structure. Proliferations of toxic microalgae in aquatic systems can cause massive fish kills, contaminate seafood with toxins and alter ecosystems in ways that humans perceive as harmful. The chapter addresses a comprehensive account regarding basic features related to algal bloom, such as Redfield ratios, eutrophication and hypoxia (deoxygenation). This is followed by detailed account of the major bloom causative agents (diatoms, dinoflagellates and cyanobacteria) and the remote sensors usually in practice for water quality monitoring. Finally a comprehensive account of the analytical instruments has been discussed generally used for microalgal studies for taxonomic and chemical component analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anantharaman, P., Thirumaran, G., Arumugam, R., Ragupathi Raja Kannan, R., Hemalatha, A., Kannathasan, A., Sampathkumar, P., & Balasubramanian, T. (2010). Monitoring of Noctilucabloom in Mandapam and Keelakarai coastal waters; South-East coast of India. Recent Research in Science and Technology, 2(10), 51–58.

    Google Scholar 

  • Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries, 25(4B), 704–726.

    Article  Google Scholar 

  • Anoop, A. K., Krishnakumar, P. K., & Rajagopalan, M. (2007). Trichodesmium erythraeum (Ehrenberg) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coast and Shelf Science, 71, 641–646.

    Article  Google Scholar 

  • Aspila, K. I., Agemian, T. I., & Chan, A. S. (1976). Semi-automatic method for the determination of inorganic, organic and total phosphorous in sediments. Analyst, 101, 187–197.

    Article  Google Scholar 

  • Bastviken, D., & Tranvik, L. (2001). The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters. Applied and Environmental Microbiology, 67, 2916–2921.

    Article  Google Scholar 

  • Blay, P. K. S., Brombacher, S., & Volmer, D. A. (2003). Studies on azaspiracidbiotoxins. III. Instrumental validation for rapid quantification of AZA 1 in complex biological matrices. Rapid Communications in Mass Spectrometry, 17, 2153–2159.

    Article  Google Scholar 

  • Botana, L. M., Rodriguez-Vieytes, M., Alfonso, A., & Louzao, M. C. (1996). Phycotoxins: Paralytic shellfish poisoning and diarrheic shellfish poisoning. In L. M. L. Nollet (Ed.), Handbook of food analysis – Residues and other food component analysis (Vol. 2, pp. 1147–1169). New York: Marcel Dekker Inc.

    Google Scholar 

  • Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., & Kamykowski, D. (1999). Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 104, 5403–5421.

    Article  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Casabianca, S., Cornetti, L., Capellacci, S., Vernesi, C., & Penna, A. (2017). Genome complexity of harmful microalgae. Harmful Algae, 63, 7–12.

    Article  Google Scholar 

  • Choi, J. K., Min, J. E., Noh, J. H., Han, T. H., Yoon, S., Park, Y. J., & Park, J. H. (2014). Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI). Harmful Algae, 39, 295–302.

    Article  Google Scholar 

  • Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.

    Article  Google Scholar 

  • Conley, D. J. (1999). Biogeochemical nutrient cycles and nutrient management strategies. In Man and river systems (pp. 87–96). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Dale, B. (1976). Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from Trondheims fjord, Norway. Review of Palaeobotany and Palynology, 22, 39–60.

    Article  Google Scholar 

  • Dale, B. (1983). Dinoflagellate resting cysts: ‘Benthic plankton’. In G. A. Fryxell (Ed.), Survival strategies of the algae (pp. 69–137). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dale, B. (1996). Dinoflagellate cyst ecology: Modeling and geological applications. In J. Jansonius & D. C. McGregor (Eds.), Palynology principles and applications (pp. 1249–1275). Dallas: American Association of Stratigraphic Palynologists Foundation.

    Google Scholar 

  • Dale, B. (2009). Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters. Journal of Sea Research, 61, 103–113.

    Article  Google Scholar 

  • De Vernal, A., Rochon, A., Turon, J. L., & Matthiessen, J. (1998). Organic-walled dinoflagellate cysts: Palynological tracers of sea-surface conditions in middle to high latitude marine environments. Geobios, 30, 905–920.

    Article  Google Scholar 

  • Devassy, V. P. (1974). Observation on the bloom of a diatom FragilariaoceanicaCleve. Mahasagar, 7, 101–105.

    Google Scholar 

  • Devassy, V. P., & Bhattathiri, P. M. A. (1974). Phytoplankton ecology of the Cochin backwaters. Indian Journal of Marine Science, 3, 46–50.

    Google Scholar 

  • Devassy, V. P., & Sreekumaran Nair, S. R. (1987). Discolouration of water and its effect on fisheries along the Goa coast. Mahasagar-Bulletin of the National Institute of Oceanography, 20(2), 121–128.

    Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929.

    Article  Google Scholar 

  • Domingues, R. B., Barbosa, A., & Galvão, H. (2008). Constraints on the use of phytoplankton as a biological quality element within the Water Framework Directive in Portuguese waters. Marine Pollution Bulletin, 56, 1389–1395.

    Article  Google Scholar 

  • Dortch, Q., & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12, 1293−1309.

    Article  Google Scholar 

  • Draisci, R., Palleschi, L., Ferretti, E., Furey, A., James, K. J., Satake, M., & Yasumoto, T. (2000). Development of a liquid chromatography– Tandem mass spectrometry method for the identification of azaspir acid in shellfish. Journal of Chromatography, 871, 13–21.

    Article  Google Scholar 

  • Earnshaw, A. (2003). Marine toxins, Pilot Study August 2003 (Report food analysis performance assessment scheme). Sand Hutton: Central Science Laboratory.

    Google Scholar 

  • Engström-Öst, J., Brutemark, A., Vehmaa, A., Motwani, N. H., & Katajisto, T. (2015). Consequences of a cyanobacteria bloom for copepod reproduction, mortality and sex ratio. Journal of Plankton Research, 37(2), 388–398.

    Article  Google Scholar 

  • EL Wakeel, S. K., & Riley, J. P. (1957). Determination of organic carbon in marine mud. Journal du Conseil International pour Exploration de la Mer, 22, 180–183.

    Article  Google Scholar 

  • Fenchel, T., Kristensen, L. D., & Rasmussen, L. (1990). Water column anoxia – Vertical zonation of planktonic protozoa. Marine Ecology Progress Series, 62, 1–10.

    Article  Google Scholar 

  • Fensome, R.A., Taylor, F.J.R., Norris, G., Sarjeant, W.A.S., Wharton, D.I., Williams, G.L., 1993. A classification of living and fossil dinoflagellates (Special Publication Number 7, pp. 351). New York: Micropaleontology Press, American Museum of Natural History.

    Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). Brazon river bars, a study in significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3–27.

    Article  Google Scholar 

  • Furey, A., Braña-Magdalena, A., Lehane, M., Moroney, C., James, K. J., Satake, M., & Yasumoto, T. (2002). Determination of azaspiracids in shellfish using liquid chromatography/tandem electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 16(3), 238–242.

    Article  Google Scholar 

  • Fux, E., McMillan, D., Bire, R., & Hess, P. (2007). Development of an ultra- performance liquid chromatography–mass spectrometry method for the detection of lipophilic marine toxins. Journal of Chromatography A, 1157, 273–280.

    Article  Google Scholar 

  • Gohin, F., Saulquin, B., Oger-Jeanneret, H., Lozac'h, L., Lampert, L., Lefebvre, A., & Bruchon, F. (2008). Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations. Remote Sensing of Environment, 112(8), 3329–3340.

    Article  Google Scholar 

  • Gopakumar, G., Sulochanan, B., & Venkatesan, V. (2009). Bloom of Noctilucascintillans (Maccartney) in Gulf of Mannar, southeast coast of India. Journal of Marine Biological Association of India, 55(1), 75–80.

    Google Scholar 

  • Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79–99.

    Article  Google Scholar 

  • Hansen, J. L. S., & Bendtsen, J. (2009). Effects of climate change on hypoxia in the North Sea – Baltic Sea transition zone. Earth and Environmental Science, 6, 1755–1307.

    Google Scholar 

  • Head, M. J. (1996). Modern dinoflagellate cysts and their biological affinities. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications (Vol. 3, pp. 1197–1248). Salt Lake City: A.A.S.P. Foundation.

    Google Scholar 

  • Hess, P., Butter, T., Petersen, A., Silke, J., & McMahon, T. (2009). Performance of the EU-harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates characterized by liquid chromatography coupled to tandem mass spectrometry. Toxicon, 53(7), 713–722.

    Article  Google Scholar 

  • Hollingworth, T., & Wekell, M. M. (1990). Fish and other marine products 959.08. Paralytic shellfish poisoning. Biological method, final action. In K. Hellrich (Ed.), Official methods of analysis of the Association of Official Analytical Chemists (15th ed., pp. 881–882). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Hornell, J., & Nayudu, R. M. (1923). A contribution to the life history of sardines with notes on the plankton of the Malabar Coast. Madras Fisheries Bulletin, 17, 129–197.

    Google Scholar 

  • Howarth, R. W., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T., Marcus, N., McGlathery, K., Sharpley, A., & Walker, D. (2000). Nutrient pollution of coastal rivers, bays, and seas. Issues. Ecology, 7, 1–15.

    Google Scholar 

  • ICES. (1984). Report of the ICES special meeting on the causes, dynamics and effects of exceptional marine blooms and related events (International Council Meeting Paper 1984/ E, 42, ICES.

    Google Scholar 

  • IOCCG. (2000). Remote sensing of ocean color in coastal, and other optically complex waters. In S. Sathyendranath (Ed.), Reports of the International Color Coordinating Group 3 (p. 144). Dartmouth: IOCCG Project Office.

    Google Scholar 

  • Ismael, A. A. (1993). Systematic and ecological studies of the planktonic dinoflagellates of the coastal water of Alexandria. M.Sc. Thesis, Faculty of Science in Alexandria University, p. 115.

    Google Scholar 

  • Ismael, A. A., & Khadr, A. (2003). Alexandrium minutum cysts in sediment cores from the Eastern Harbour of Alexandria, Egypt. Oceanologia, 45(4), 721–731.

    Google Scholar 

  • Ismael, A., El-Masry, E., & Khadr, A. (2014). Dinoflagellate [cyst] [S1] as signals for eutrophication in the eastern harbour of Alexandria-Egypt. Indian Journal of Geo-Marine Sciences, 43(3), 365–371.

    Google Scholar 

  • Iyer, C. S. P., Robin, R. S., Sreekala, M. S., & Kumar, S. S. (2008). Kareniamikimotoi bloom in Arabian Sea. Harmful Algae News, 37, 9–10.

    Google Scholar 

  • James, K. J., Furey, A., Lehane, M., Moroney, C., Satake, M., & Yasumoto, T. (2001). LC-MS methods for the investigation of a new shellfish toxic syndrome–Azaspiracid Poisoning (AZP). In Mycotoxins and phycotoxins in perspective at the turn of the century (pp. 401–408). Wageningen.

    Google Scholar 

  • James, K. J., Sierra, M. D., Lehane, M., Magdalena, A. B., & Furey, A. (2003). Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon, 41, 277–283.

    Article  Google Scholar 

  • Justic, D., Rabalais, N. N., & Turner, R. E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1), 41–46.

    Article  Google Scholar 

  • Kanaya, G, Nakamura, Y, & Koizumi, T. (2018). Ecological thresholds of hypoxia and sedimentary H2S in coastal soft-bottom habitats: A macro invertebrate-based assessment. Marine Environmental Research (article in press).

    Article  Google Scholar 

  • Karunasagar, I. (1993). Gymnodinium kills farm fish in India. Harmful Algae News, 5(3).

    Google Scholar 

  • Karunasagar, I., Gowda, H. S. V., Subburaj, M., Venugopal, M. N., & Karunasagar, I. (1984). Outbreak of paralytic shellfish poisoning in Mangalore, west coast of India. Current Science, 53, 247–249.

    Google Scholar 

  • Katti, R. J., Gupta, T. R. C., & Shetty, H. P. C. (1988). On the occurrence of “green tide” in the Arabian Sea off Mangalore. Current Science, 57, 38–381.

    Google Scholar 

  • Klemas, V. (2012). Remote sensing of algal blooms: An overview with case studies. Journal of Coastal Research, 28(1A), 34–43.

    Article  Google Scholar 

  • Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrology (p. 549). New York: Appleton Century and Crofts.

    Google Scholar 

  • Lee, Z., Carder, K. L., Florida, S., & Petersburg, S. (2005). Hyperspectral remote sensing. In Remote sensing of coastal aquatic environments technologies, techniques and applications (pp. 181–204). Dordrecht: Springer.

    Google Scholar 

  • Lehane, M., Brana-Magdalena, A., Moroney, C., Furey, A., & James, K. J. (2002). Liquid chromatography with electrospray ion trap mass spectrometry for the determination of five azaspiracids in shellfish. Journal of Chromatography A, 950, 139–147.

    Article  Google Scholar 

  • Lehane, M., Saez, M. J. F., Magdalena, A. B., Canas, I. R., Sierra, M. D., Hamilton, B., Furey, A., & James, K. J. (2004). Liquid chromatography– Multiple tandem mass spectrometry for the determination of ten azaspiracids, including hydroxyl analogues in shellfish. Journal of Chromatography A, 1024, 63–70.

    Article  Google Scholar 

  • Lucas, C. E. (1947). The ecological effects of external metabolites. Biological Reviews, 22(3), 270–295.

    Article  Google Scholar 

  • Lunetta, R., Schaeffer, B., Stumpf, R., Keith, D., Jacobs, S., & Murphy, M. (2015). Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing of Environment, Elsevier, 157, 24–34.

    Article  Google Scholar 

  • Madhu, N. V., Reny, P. D., Paul, M., Ulhas, N., & Resmi, P. (2011). Occurrence of red tide caused by Kareniamikimotoi (toxic dinoflagellate) in the south-west coast of india. Indian Journal of Geo-Marine Sciences, 40(6), 821–825.

    Google Scholar 

  • Marret, F., & Zonneveld, K. A. F. (2003). Atlas of modern organic- walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology, 125, 1251–1200.

    Article  Google Scholar 

  • Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52, 367–376.

    Article  Google Scholar 

  • Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.

    Article  Google Scholar 

  • Matsuoka, K. (1999). Eutrophication process recorded in dinoflagellate cyst assemblages a case of Yokohama Port, Tokyo Bay. Japan Science of the Total Environment, 231, 17–35.

    Article  Google Scholar 

  • Matsuoka, K. (2001). Further evidence for a marine dinoflagellate cyst as an indicator of eutrophication process in Yokohama Port, Tokyo Bay, Japan. Comments on a discussion by B. Dale. Japan Science of the Total Environment, 264, 221–233.

    Article  Google Scholar 

  • Matsuoka, K., & Fukuyo, Y. (2000). Technical guide for modern Dinoflagellate cyst study (p. 29). WESTPAC- HAB/WESTPAC/IOC, Japan Society for the Promotion of Science.

    Google Scholar 

  • Matsuoka, K., Joyce, L. B., Kotani, Y., & Matsuyama, Y. (2003). Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan. Journal of Plankton Research, 25, 1461–1470.

    Article  Google Scholar 

  • Meire, L., Soetaert, K. E. R., & Meysman, F. J. R. (2013). Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences, 10(4), 2633–2653.

    Article  Google Scholar 

  • Mohanty, A. K., Satpathy, K. K., Sahu, G., Sasmal, S. K., Sahu, B. K., & Panigrahy, R. C. (2007). Red tide of Noctilucascintillans and its impact on the coastal water quality of the near-shore waters, off the Rushikulya River, Bay of Bengal. Current Science, 93, 616–618.

    Google Scholar 

  • Mora, C., et al. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11, e1001682.

    Article  Google Scholar 

  • Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22, 709–722.

    Article  Google Scholar 

  • Moroney, C., Lehane, M., Brana-Magdalena, A., Furey, A., & James, K. J. (2002). Comparison of solid-phase extraction methods for the determination of azaspiracids in shellfish by liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 963, 353–361.

    Article  Google Scholar 

  • Mudroch, A., Azcue, J. M., & Mudroch, P. (1997). Influence of the use of a drainage basin on physical and chemical properties of bottom sediments of lakes (p. 287). Boca Raton: Lewis Publishers, CRC Press, Inc.

    Google Scholar 

  • Murata, A., Nagashima, Y., & Taguchi, S. (2012). N: P ratios controlling the growth of the marine dinoflagellate Alexandrium tamarense: Content and composition of paralytic shellfish poison. Harmful Algae, 20, 11–18.

    Article  Google Scholar 

  • Nagvi, S. W. A., Yoshinari, T., Jayakumar, D. A., Altabet, M. A., Narvekar, R. V., Devol, A. H., Brandes, J. A., & Codispoti, L. A. (1998). Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature, 394, 462–464.

    Article  Google Scholar 

  • Nayak, B. B., Karunasagar, I., & Karunasagar, I. (2000). Bacteriological and physico-chemical factors associated with Noctilucamilliaris bloom, along Mangalore, southwest coast of India. Indian Journal of Marine Science, 29(2), 139–143.

    Google Scholar 

  • Nixon, S. W. (1995). Coastal marine eutrophication – A definition, social causes, and future concerns. Ophelia, 41, 199–219.

    Article  Google Scholar 

  • Nixon, S. W. (1996). Regional coastal research—What is it? Why do it? What role should NAML play? Biological Bulletin, 190, 252–259.

    Article  Google Scholar 

  • Novoa, S., Chust, G., Valencia, V., Froidefond, J.-M., & Morichon, D. (2011). Estimation of chlorophyll-a concentration in waters over the continental shelf of the Bay of Biscay: A comparison of remote sensing algorithms. International Journal of Remote Sensing, 32, 8349–8371.

    Article  Google Scholar 

  • O’Herald. (2001). NIO discovers toxic algal off Goa. O’Herald Newspaper Goa.

    Google Scholar 

  • O’Neil, J. M. (2012). The psychology of men. In E. Altmaier & J. Hansen (Eds.), Oxford handbook of counseling psychology. New York: Oxford University Press.

    Google Scholar 

  • Ofuji, K., Satake, M., Oshima, Y., McMahon, T., James, K. J., & Yasumoto, T. (1999). A sensitive and specific determination method for azaspiracids by liquid chromatography mass spectrometry. Natural Toxins, 7, 247–250.

    Article  Google Scholar 

  • Oliver, M. (2017). Meat industry blamed for largest-ever ‘dead zone’ in Gulf of Mexico. The Guardian. ISSN 0261-3077.

    Google Scholar 

  • Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2007). Green tide of Noctilucamiliarisin the Northern Arabian Sea. Harmful Algae News, 1–16.

    Google Scholar 

  • Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2008a). Microcystisaeruginosa bloom on Southwest coast of India. Harmful Algae News, 37, 11–12.

    Google Scholar 

  • Padmakumar, K. B., Sanilkumar, M. G., Saramma, A. V., Sanjeevan, V. N., & Menon, N. R. (2008b). “Green tide” of Noctilucamiliaris in the Northern Arabian Sea. Harmful Algae News, 36, 12.

    Google Scholar 

  • Padmakumar, K. B., Smitha, B. R., Thomas, L. C., Fanimol, C. L., SreeRenjima, G., Menon, N. R., & Sanjeevan, V. N. (2010). Blooms of Trichodesmium erythraeum in the South Eastern Arabian Sea during the onset of 2009 summer monsoon. Ocean Science Journal, 45(3), 151–157.

    Article  Google Scholar 

  • Padmakumar, K. B., Thomas, L. C., Salini, T. C., John, E., Menon, N. R., & Sanjeevan, V. N. (2011). Monospecific bloom ofnoxious raphidophyteChattonella marina in the coastal waters of South-West coast of India. International Journal of Biosciences, 1(1), 57–69.

    Google Scholar 

  • Pearl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology, 1, 27–37.

    Article  Google Scholar 

  • Pearl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65, 995–1010.

    Article  Google Scholar 

  • Pickard, G. L., & Emery, W. J. (1982). Description physical oceanography: An introduction (p. 47). Oxford: Pergamon Press.

    Google Scholar 

  • Pospelova, V., & Chmura, G. L. (1998). Modern distribution of dinoflagellate cysts in coastal lagoons of Rhode Island, USA. Norges teknisk-naturvitenskapelige universitet Vitenskapsmuseet Rapport Botanisk Serie, 1, 122–123.

    Google Scholar 

  • Pospelova, V., & Head, M. J. (2002). Islandinium brevispinosum sp. nov. (Dinoflagellata), a new species of organic-walled dinoflagellate cyst from modern estuarine sediments of New England (USA). Journal of Phycology, 38, 593–601.

    Article  Google Scholar 

  • Pospelova, V., & Kim, S. J. (2010). Dinoflagellate cysts in recent estuarine sediments from aquaculture sites of southern South Korea. Marine Micropaleontology, 76, 37–51.

    Article  Google Scholar 

  • Poulin, R. X., Poulson-Ellestad, K. L., Roy, J. S., & Kubanek, J. (2018). Variable allelopathy among phytoplankton reflected in red tide metabolome. Harmful Algae, 71, 50–56.

    Article  Google Scholar 

  • PrabhuMatondkar, S. G., Bhat, S. R., Dwivedi, R. M., & Nayak, S. R. (2004). Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea. Harmful Algae News, 26, 4–5.

    Google Scholar 

  • Prakash, A., & Sarma, A. H. V. (1964). On the occurrence of “red water”phenomenon on the west coast of India. Current Science, 33, 168–170.

    Google Scholar 

  • Procházková, T., Sychrová, E., Javůrková, B., Večerková, J., Kohoutek, J., Lepšová-Skácelová, O., & Hilscherová, K. (2017). Phytoestrogens and sterols in waters with cyanobacterial blooms-analytical methods and estrogenic potencies. Chemosphere, 170, 104–112.

    Article  Google Scholar 

  • Quilliam, M. A., Hess, P., & Dell’Aversano, C. (2001). Recent developments in the analysis of phycotoxins by liquid chromatography–mass spectrometry. In Mycotoxins and phycotoxins in perspective at the turn of the century (pp. 383–391). Wageningen: Ponsen and Looijen.

    Google Scholar 

  • Rajasekar, K. T., Rajkumar, M., Sun, J., Prabu, V. A., & Perumal, P. (2010). Bloom forming species of phytoplankton in two coastal waters in the Southeast coast of India. Journal of Ocean University of China, 9(3), 265–272.

    Article  Google Scholar 

  • Redfield, A. C. (1934). In R. J. Daniel (Ed.), James Johnstone memorial volume. Liverpool: Liverpool University Press.

    Google Scholar 

  • Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.

    Google Scholar 

  • Rehmann, N., Hess, P., & Quilliam, M. A. (2008). Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 22(4), 549–558.

    Article  Google Scholar 

  • Ryther, J. H., & Dunxtan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008–1013.

    Article  Google Scholar 

  • Ryu, K., Lee, H.-R., & Kim, W. G. (2012). The influence of the quality of the physical environment, food, and service on restaurant image, customer perceived value, customer satisfaction, and behavioral intentions. International Journal of Contemporary Hospitality Management, 24(2), 200–223.

    Article  Google Scholar 

  • Saetre, M. M. L., Dale, B., Abdullah, M. I., & Saetre, G. P. O. (1997). Dinoflagellate cysts as potential indicators of industrial pollution in a Norwegian fjord. Marine Environmental Research, 44(2), 167–189.

    Article  Google Scholar 

  • Sahayak, S., Jyothibabu, R., Jayalakshmi, K. J., Habeebrehman, H., Sabu, P., Prabhakaran, M. P., Jasmine, P., Shaiju, P., George, R. M., Threslamma, J., & Nair, K. K. C. (2005). Red tide of Noctilucamiliaris off south of Thiruvananthapuram subsequent to the ‘stench event’ at the southern Kerala coast. Current Science, 89, 1472–1473.

    Google Scholar 

  • Sanilkumar, M. G., Thomas, A. M., Philip, A. A., Hatha, M., Sanjeevan, V. N., & Saramma, A. V. (2009). First report of Protoperidinium bloom from Indian waters. Harmful Algae News, 39, 15.

    Google Scholar 

  • Santhosh Kumar, C., Ashok Prabu, V., Sampathkumar, P., & Anantharaman, P. (2010). Occurrence of algal bloom Microcystisaeruginosa in the Vellar estuary, South-East coast of India. International Journal of Current Research, 5, 52–55.

    Google Scholar 

  • Sarangi, R. K., & Mohamed, G. (2011). Seasonal algal bloom and water quality around the coastal Kerala during southwest monsoon using in situ and satellite data. Indian Journal of Geo-Marine Sciences, 40(3), 356–369.

    Google Scholar 

  • Sahu, S. K., & Mukhopadhyay, S. (2015). On generating a flexible class of anisotropic spatial models using gaussian predictive processes. Technical Report, University of Southampton.

    Google Scholar 

  • Satpathy, K. K., Mohanty, A. K., Sahu, G., Prasad, M. V. R., Venkatesan, R., Natesan, U., & Rajan, M. (2007). On the occurrence of Trichodesmium erythraeum (Ehr.) bloom in the coastal waters of Kalpakkam, east coast of India. Indian Journal of Science and Technology, 1(2), 1–9.

    Google Scholar 

  • Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184(4139), 897–899.

    Article  Google Scholar 

  • Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363.

    Article  Google Scholar 

  • Smayda, T. J. (1989). Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In E. M. Cosper, V. M. Bricelj, & E. J. Carpenter (Eds.), Novel phytoplankton blooms (pp. 449–483). Berlin: Springer.

    Chapter  Google Scholar 

  • Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Graneli, B. Sundstrom, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 29–40). New York: Elsevier.

    Google Scholar 

  • Smayda, T. J. (2004). Eutrophication and phytoplankton. In P. Wassmann, & K. Olli (Eds.), Integrated approaches to drainage basin nutrient inputs and coastal eutrophication (pp. 89–98). Electronic-Book (pdf file on web page: http://www.ut.ee/_olli/eutr/).

  • Smayda, T. J., & White, A. W. (1990). Has there been a global expansion of algal blooms? If so is there a connection with human activities? In E. Granelli (Ed.), Toxic marine phytoplankton (p. 516). New York: Elsevier.

    Google Scholar 

  • Stolte, W., McCollin, T., Noordeloos, A. A. M., & Riegman, R. (1994). Effect of nitrogen source on the size distribution within marine phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 184, 83–97.

    Article  Google Scholar 

  • Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., & Brutemark, A. (2013). Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS One, 8(6), 466–475.

    Article  Google Scholar 

  • Suzuki, T. M., Sherr, B. E., & Sherr, F. B. (1996). Estimation of ammonium regeneration efficiencies associated with bacterivory in pelaglc food webs via a 15N tracer method. Journal of Plankton Research, 18, 411–428.

    Article  Google Scholar 

  • Syrett, P. J. (1981). Nitrogen metabolism of microalgae. Canadian Bulletin of Fisheries and Aquatic Sciences, 210, 182–210.

    Google Scholar 

  • Taylor F. J. R., Pallingher U., 1987. Ecology of dinoflagellates. In: F. J. R. Taylor (Ed.), The biology of dinoflagellates (Botanical monographs, Vol. 21, pp. 399–529). Oxford: Blackwell Scientific.

    Google Scholar 

  • Thorsen, T. A., & Dale, B. (1997). Dinoflagellate cysts as indicators of pollution and past climate in a Norwegian fjord. Holocene, 7(4), 433–446.

    Article  Google Scholar 

  • Tiwari, L. R., & Nair, V. R. (1998). Ecology of phytoplankton from Dharmatar creek, west coast of India. Indian Journal of Marine Science, 27(3&4), 302–309.

    Google Scholar 

  • Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q., Justic, D., Shaw, R., & Cope, J. (1998). Fluctuating silicate: Nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America, 95, 13048–13051.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice (p. 401). New York: Springer.

    Google Scholar 

  • Urquhart, E. A., Schaeffer, B. A., Stumpf, R. P., Loftin, K. A., & Jeremy Werdell, P. (2017). A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae, 67, 144–152.

    Article  Google Scholar 

  • Usleber, E., Straka, M., & Terplan, G. (1994). Enzyme immunoassay for fumonisin B1 applied to cornbased food. Journal of Agricultural and Food Chemistry, 42, 1392–1396.

    Article  Google Scholar 

  • Van Dolah, F. M. (2000). Marine algal toxins: Origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108(1), 133–141.

    Article  Google Scholar 

  • Van Egmond, H. P., Aune, T., Lassus, P., Speijers, G., & Waldock, M. (1993). Paralytic and diarrheic shellfish poisons: Occurrence in Europe, toxicity, analysis and regulation. Journal of Natural Toxins, 2, 41–83.

    Google Scholar 

  • Vaquer-Sunyer, R., & Duarte, C. M. (2008). Threshholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452–15457.

    Article  Google Scholar 

  • Venugopal, P., Haridas, P., MadhuPratap, M., SRao, S., & T. (1979). Incidence of red water along south Kerala coast. Indian Journal of Marine Science, 8, 94–97.

    Google Scholar 

  • Volmer, D. A., Brombacher, S., & Whitehead, B. (2002). Studies on Azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns. Rapid Communications in Mass Spectrometry, 16, 2298–2305.

    Article  Google Scholar 

  • Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. A., Dyble, J., & Fahnenstiel, G. L. (2008). Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. International Journal of Remote Sensing, 29(12), 3665–3672.

    Article  Google Scholar 

  • Yasumoto, T., Murata, M., Oshima, Y., Matsumoto, G. K., & Clardy, J. (1984). Diarrheic shellfish poisoning. In Seafood toxins. Washington, DC: American Chemical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S.K. (2018). Algal Blooms: Basic Concepts. In: Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts. Springer, Singapore. https://doi.org/10.1007/978-981-10-8261-0_1

Download citation

Publish with us

Policies and ethics