Skip to main content

Apiculture in Israel

  • Chapter
  • First Online:

Abstract

Honey bee (Apis mellifera) has a thousand years of history in this part of Asia. The native honey bee race is considered to be A. mellifera syriaca. This subspecies was generally replaced by a more docile subspecies A. mellifera ligustica, but members of other subspecies are also occasionally introduced. Only about parts of the country area are suitable for honey bees due to very limited vegetation arid conditions in the southern part of the country. The majority of the colonies are concentrated at the center and north of the country reaching density of more than 14 colonies per square kilometers. To supplement bee forage, Eucalyptus trees are planted intensively around the country. Local beekeepers practice modern methods of beekeeping using Langstroth hive boxes. All professional beekeepers usually treat their colonies preventively against Varroa destructor mites and foulbrood diseases. Many beekeepers also treat preventively against Nosema disease. Despite regular management, Varroa and viruses remain a major obstacle for successful beekeeping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alaux C, Brunet J-L, Dussaubat C et al (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12:774–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Arien Y, Dag A, Zarchin S et al (2015) Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci 112:15761–15766

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boncristiani HF, Evans JD, Chen Y et al (2013) In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS One 8:e73429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278–294

    Article  Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    Article  PubMed  CAS  Google Scholar 

  • Dag A (2008) Bee pollination of crop plants under environmental conditions unique to enclosures. J Apic Res 47:162–165

    Article  Google Scholar 

  • De Miranda JR, Cordoni G, Budge G (2009) The acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus complex. J Invertebr Pathol 103(Suppl):S30–S47

    PubMed  Google Scholar 

  • Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620

    Article  PubMed  CAS  Google Scholar 

  • Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet Res 41:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddad N, De Miranda JR, Bataena A (2008) Discovery of Apis florea in Aqaba, Jordan. J Apic Res 47:173–174

    Google Scholar 

  • Hou C, Rivkin H, Slabezki Y et al (2014) Dynamics of the presence of Israeli acute paralysis virus in honey bee colonies with colony collapse disorder. Virus 6:2012–2027

    Article  CAS  Google Scholar 

  • Leat N, Ball B, Govan V, Davison S (2000) Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees. J Gen Virol 81:2111–2119

    Article  PubMed  CAS  Google Scholar 

  • Mazar A, Panitz-Chohen N (2007) It is the land of honey: beekeeping at Tel Rehov. East Archaeol 70:202–219

    Google Scholar 

  • Mazzei M, Carrozza ML, Luisi E et al (2014) Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. Martin SJ, editor. PLoS One 9:e113448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazzi F, Pennacchio F (2014) Disentangling multiple interactions in the hive ecosystem. Trends Parasitol 30:556–561

    Article  PubMed  Google Scholar 

  • Pisanty G, Mandelik Y (2016) Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecol Appl 25:742–752

    Article  Google Scholar 

  • Pisanty G, Klein A-M, Mandelik Y (2014) Do wild bees complement honeybee pollination of confection sunflowers in Israel? Apidologie 45:235–247

    Article  Google Scholar 

  • Pisanty G, Afik O, Wajnberg E et al (2016) Watermelon pollinators exhibit complementarity in both visitation rate and single-visit pollination efficiency. J Appl Ecol 53:360–370

    Article  Google Scholar 

  • Ribière M, Olivier V, Blanchard P (2010) Chronic bee paralysis: a disease and a virus like no other? J Invertebr Pathol 103(Suppl):S120–S131

    Article  PubMed  Google Scholar 

  • Runckel C, Flenniken ML, Engel JC et al (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 6:e20656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryabov EV, Wood GR, Fannon JM et al (2014) A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog 10:e1004230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Levitt AL, Rajotte EG et al (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 5:e14357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soroker V, Hetzroni A, Yakobson B et al (2011) Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 42:192–199

    Article  Google Scholar 

  • Soroker V, Avni D, Slabezki Y et al (2012) Colony losses and their potential causes in Israel. Proceedings of the 19° Congreso Internacional De Actualización Apícola, Oxaca, Mexico, 2012

    Google Scholar 

  • Soroker V, Sarig S, Slavetsky Y et al (2017) Leakage of agrochemicals from agriculture to environment: an impact on honeybees. Ecol Environ Hebr 2:16–23

    Google Scholar 

Download references

Acknowledgements

The authors thank very much Dr. Eitan Eilon and Mr. Moshe Peer for teaching us about history and culture of beekeeping in the region. To Inna Goldenberg for the figure preparation and assistance in data collection and to all the beekeepers for devoting their time to complete questionnaires providing the data about current practices and colony loss data. NC was supported by a Grant of the Chief Scientist of the Ministry of Agriculture number 131-1723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Soroker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soroker, V., Yossi, S., Chejanovsky, N. (2018). Apiculture in Israel. In: Chantawannakul, P., Williams, G., Neumann, P. (eds) Asian Beekeeping in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-10-8222-1_4

Download citation

Publish with us

Policies and ethics