Skip to main content

Functional Nucleic Acid Biosensors for Small Molecules

  • Chapter
  • First Online:
Functional Nucleic Acid Based Biosensors for Food Safety Detection

Abstract

Functional nucleic acid including aptamer, DNAzyme, and triplex DNA has inspired increasing researchers’ attention due to variability and specificity of sequence and potential in biosensor fabrication. Especially, the rapid development of aptamer SELEX technique for small molecules makes a significant contribution to the recognition of small molecules. This highly specific affinity could finally be transduced into an electrochemical or optical signal output for a quantitative determination. Moreover, a variety of nanomaterials such as AuNPs, carbon nanotubes, graphene, and carbon black have been exploited to be modified onto the surface of biosensor for ultrasensitive detection. Additionally, the combination of nucleic acid amplification technique and aptamer is also an effective approach to improve the sensitivity of biosensor. It promises the promotion of aptasensors in performance toward a new level. In this chapter, we will review the functional nucleic acid biosensors for small molecules except heavy metal mentioned at previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Kralj Cigić, H. Prosen, An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 10(1), 62–115 (2009)

    Article  CAS  Google Scholar 

  2. I. Palchetti, M. Mascini, Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal. Bioanal. Chem. 391(2), 455–471 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. I. Bazin, S.A. Tria, A. Hayat, et al., New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 87, 285–298 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. G. Catanante, A. Rhouati, A. Hayat, et al., An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis 28(8), 1750–1763 (2016)

    Article  CAS  Google Scholar 

  5. X. Guo, F. Wen, N. Zheng, et al., Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. Biosens. Bioelectron. 56, 340–344 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)

    Article  CAS  Google Scholar 

  7. A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818 (1990)

    Article  CAS  Google Scholar 

  8. M. Yüce, N. Ullah, H. Budak, Trends in aptamer selection methods and applications. Analyst 140(16), 5379–5399 (2015)

    Article  CAS  Google Scholar 

  9. M. McKeague, A. De Girolamo, S. Valenzano, et al., Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal. Chem. 87(17), 8608–8612 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. J.A. Cruz-Aguado, G. Penner, Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56(22), 10456–10461 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. L. Zhu, X. Shao, Y. Luo, et al., Two-way gold nanoparticle label-free sensing of specific sequence and small molecule targets using switchable concatemers. ACS Chem. Biol. 12(5), 1373–1380 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. C. Yang, V. Lates, B. Prieto-Simón, et al., Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta 116, 520–526 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. N. Duan, S. Wu, X. Ma, et al., Gold nanoparticle-based fluorescence resonance energy transfer aptasensor for ochratoxin A detection. Anal. Lett. 45(7), 714–723 (2012)

    Article  CAS  Google Scholar 

  14. J.J. Zhang, Z. Li, S. Zhao, et al., Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 141(13), 4029–4034 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. M. McKeague, R. Velu, K. Hill, et al., Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6(8), 2435–2452 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Kuang, W. Chen, D. Xu, et al., Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens. Bioelectron. 26(2), 710–716 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhang, X. Zhang, G. Yang, et al., A signal-on fluorescent aptasensor based on Tb 3+ and structure-switching aptamer for label-free detection of ochratoxin A in wheat. Biosens. Bioelectron. 41, 704–709 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhao, Y. Yang, Y. Luo, et al., Double detection of mycotoxins based on SERS labels embedded Ag@Au core–shell nanoparticles. ACS Appl. Mater. Interfaces 7(39), 21780–21786 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. W.B. Shim, H. Mun, H.A. Joung, et al., Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36(1), 30–35 (2014)

    Article  CAS  Google Scholar 

  20. N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review[J]. Appl. Biochem. Biotechnol. 175(6), 3093–3119 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. S. Mostafalou, M. Abdollahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives[J]. Toxicol. Appl. Pharmacol. 268(2), 157–177 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. A.I. García-Valcárcel, J.L. Tadeo, A combination of ultrasonic assisted extraction with LC–MS/MS for the determination of organophosphorus pesticides in sludge[J]. Anal. Chim. Acta 641(1), 117–123 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. D.I. Kolberg, O.D. Prestes, M.B. Adaime, et al., Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC-MS[J]. Food Chem. 125(4), 1436–1442 (2011)

    Article  CAS  Google Scholar 

  24. M.R. Saidur, A.R.A. Aziz, W.J. Basirun, Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review[J]. Biosens. Bioelectron. 90, 125–139 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. S. Hassani, S. Momtaz, F. Vakhshiteh, et al., Biosensors and their applications in detection of organophosphorus pesticides in the environment[J]. Arch. Toxicol., 1–22 (2017)

    Google Scholar 

  26. Y. Du, S. Dong, Nucleic acid biosensors: recent advances and perspectives[J]. Anal. Chem. 89(1), 189–215 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. J. He, Y. Liu, M. Fan, et al., Isolation and identification of the DNA aptamer target to acetamiprid[J]. J. Agric. Food Chem. 59(5), 1582–1586 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. L. Fan, G. Zhao, H. Shi, et al., A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid[J]. Biosens. Bioelectron. 43, 12–18 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. H. Shi, G. Zhao, M. Liu, et al., Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism[J]. J. Hazard. Mater. 260, 754–761 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. P. Weerathunge, R. Ramanathan, R. Shukla, et al., Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing[J]. Anal. Chem. 86(24), 11937–11941 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. B. Lin, Y. Yu, R. Li, et al., Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer[J]. Sensors Actuators B Chem. 229, 100–109 (2016)

    Article  CAS  Google Scholar 

  32. Y. Tian, Y. Wang, Z. Sheng, et al., A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length[J]. Anal. Biochem. 513, 87–92 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. J. Guo, Y. Li, L. Wang, et al., Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots[J]. Anal. Bioanal. Chem. 408(2), 557–566 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Qi, F.R. Xiu, M. Zheng, et al., A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism[J]. Biosens. Bioelectron. 83, 243–249 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. W. Yang, Y. Wu, H. Tao, et al. Ultrasensitive and selective colorimetric detection of acetamiprid pesticide based on the enhanced peroxidase-like activity of gold nanoparticles[J]. Anal. Methods, 9(37), 5484–5493 (2017)

    Article  CAS  Google Scholar 

  36. Q. Liu, J. Huan, X. Dong, et al., Resonance energy transfer from CdTe quantum dots to gold nanorods using MWCNTs/rGO nanoribbons as efficient signal amplifier for fabricating visible-light-driven “on-off-on” photoelectrochemical acetamiprid aptasensor[J]. Sensors Actuators B Chem. 235, 647–654 (2016)

    Article  CAS  Google Scholar 

  37. L. Wang, X. Liu, Q. Zhang, et al., Selection of DNA aptamers that bind to four organophosphorus pesticides[J]. Biotechnol. Lett. 34(5), 869–874 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhang, L. Wang, Z. Tu, et al., Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay[J]. Biosens. Bioelectron. 55, 216–219 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. P. E. Sanchez, DNA aptamer development for detection of atrazine and protective antigen toxin using fluorescence polarization[J]. Electronic Theses & Dissertation (2012)

    Google Scholar 

  40. R.M. Williams, C.L. Crihfield, S. Gattu, et al., In vitro selection of a single-stranded DNA molecular recognition element against atrazine[J]. Int. J. Mol. Sci. 15(8), 14332–14347 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Bruno, J. Chanpong, Methods of producing competitive aptamer FRET reagents and assays: U.S. Patent Application 14/294,847[P]. 3 June 2014.

    Google Scholar 

  42. F. Barahona, C.L. Bardliving, A. Phifer, et al., An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy[J]. Ind. Biotechnol. 9(1), 42–50 (2013)

    Article  CAS  Google Scholar 

  43. Z. Lei, C. Zhang, Y. Liu, et al., Selection of chlorpyrifos-binding ssDNA aptamer by SELEX[J]. Jiangsu J. Agric. Sci. 1, 035 (2012)

    Google Scholar 

  44. Y. Jiao, H. Jia, Y. Guo, et al., An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes[J]. RSC Adv. 6(63), 58541–58548 (2016)

    Article  CAS  Google Scholar 

  45. Y. Jiao, W. Hou, J. Fu, et al., A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos[J]. Sensors Actuators B Chem. 243, 1164–1170 (2017)

    Article  CAS  Google Scholar 

  46. M. Jokar, M.H. Safaralizadeh, F. Hadizadeh, et al., Apta-nanosensor preparation and in vitro assay for rapid Diazinon detection using a computational molecular approach[J]. J. Biomol. Struct. Dyn. 35(2), 343–353 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. W. Bai, C. Zhu, J. Liu, et al., Gold nanoparticle–based colorimetric aptasensor for rapid detection of six organophosphorous pesticides[J]. Environ. Toxicol. Chem. 34(10), 2244–2249 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Y.S. Kwon, V.T. Nguyen, J.G. Park, et al., Detection of iprobenfos and edifenphos using a new multi-aptasensor[J]. Anal. Chim. Acta 868, 60–66 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. D. Jiang, X. Du, Q. Liu, et al., Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay[J]. Analyst 140(18), 6404–6411 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. A. Fei, Q. Liu, J. Huan, et al., Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites[J]. Biosens. Bioelectron. 70, 122–129 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. T. Tang, J. Deng, M. Zhang, et al., Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides[J]. Talanta 146, 55–61 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. P. Wang, Y. Wan, A. Ali, et al., Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate[J]. Sci. China Chem. 59(2), 237–242 (2016)

    Article  CAS  Google Scholar 

  53. T. Liu, X. Zhang, J. Hao, et al., Acetylcholinesterase-free colorimetric detection of Chlorpyrifos in fruit juice based on the oxidation reaction of H2O2 with Chlorpyrifos and ABTS2− catalyzed by hemin/G-Quadruplex DNAzyme[J]. Food Anal. Methods 8(6), 1556–1564 (2015)

    Article  Google Scholar 

  54. X. Liu, Y. Li, J. Liang, et al., Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid[J]. Talanta 160, 99–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. X. Liu, M. Song, T. Hou, et al., Label-free homogeneous electroanalytical platform for pesticide detection based on acetylcholinesterase-mediated DNA conformational switch integrated with rolling circle amplification[J]. ACS Sensors 2(4), 562–568 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Y. Yang, X. Liu, M. Wu, et al., Electrochemical biosensing strategy for highly sensitive pesticide assay based on mercury ion-mediated DNA conformational switch coupled with signal amplification by hybridization chain reaction[J]. Sensors Actuators B Chem. 236, 597–604 (2016)

    Article  CAS  Google Scholar 

  57. X. Liu, W. Li, T. Hou, et al., Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification[J]. Anal. Chem. 87(7), 4030–4036 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. X. Wang, T. Hou, S. Dong, et al., Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide[J]. Biosens. Bioelectron. 77, 644–649 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. J. Liu, Z. Cao, Y. Lu, Functional nucleic acid sensors[J]. Chem. Rev. 109(5), 1948–1998 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. Zayats, Y. Huang, R. Gill, et al., Label-free and reagentless aptamer-based sensors for small molecules[J]. J. Am. Chem. Soc. 128(42), 13666–13667 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. G. Shen, Y. Guo, X. Sun, et al., Electrochemical aptasensor based on prussian blue-chitosan-glutaraldehyde for the sensitive determination of tetracycline[J]. Nano-Micro Lett. 6(2), 143–152 (2014)

    Article  CAS  Google Scholar 

  62. L. Shen, Z. Chen, Y. Li, et al., A chronocoulometric aptamer sensor for adenosine monophosphate[J]. Chem. Commun. 21, 2169–2171 (2007)

    Article  CAS  Google Scholar 

  63. X. Sun, F. Li, G. Shen, et al., Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection[J]. Analyst 139(1), 299–308 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. M. Roushani, F. Shahdost-fard, A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform[J]. Anal. Chim. Acta 853, 214–221 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. M. Chen, N. Gan, H. Zhang, et al., Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification[J]. Microchim. Acta 183(3), 1099–1106 (2016)

    Article  CAS  Google Scholar 

  66. W. Guo, N. Sun, X. Qin, et al., A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF 6 and nanoporous PtTi alloy[J]. Biosens. Bioelectron. 74, 691–697 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. M.N. Stojanovic, P. de Prada, D.W. Landry, Fluorescent sensors based on aptamer self-assembly[J]. J. Am. Chem. Soc. 122(46), 11547–11548 (2000)

    Article  CAS  PubMed  Google Scholar 

  68. Y. Wang, J. Li, H. Wang, et al., Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes[J]. Anal. Chem. 82(15), 6607–6612 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. C. Ma, X. Yang, K. Wang, et al., A novel kinase-based ATP assay using molecular beacon[J]. Anal. Biochem. 372(1), 131–133 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. B. Shlyahovsky, D. Li, Y. Weizmann, et al., Spotlighting of cocaine by an autonomous aptamer-based machine[J]. J. Am. Chem. Soc. 129(13), 3814–3815 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. L.M. Lu, X.B. Zhang, R.M. Kong, et al., A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal[J]. J. Am. Chem. Soc. 133(30), 11686–11691 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H.M. Zhao, S. Gao, M. Liu, Y.Y. Chang, X.F. Fan, X. Quan, Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim. Acta 180(9–10), 829–835 (2013)

    Article  CAS  Google Scholar 

  73. F. Yuan, H.M. Zhao, Z.N. Zhang, L.C. Gao, J.T. Xu, X. Quan, Fluorescent biosensor for sensitive analysis of oxytetracycline based on an indirectly labelled long-chain aptamer. RSC Adv. 5(72), 58895–58901 (2015)

    Article  CAS  Google Scholar 

  74. H. Li, D.E. Sun, Y.J. Liu, Z.H. Liu, An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens. Bioelectron. 55, 149–156 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Y. Wang, B. Liu, ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene[J]. Analyst 133(11), 1593–1598 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. J.L. He, Z.S. Wu, H. Zhou, et al., Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal. Chem. 82(4), 1358–1364 (2010)

    Article  CAS  PubMed  Google Scholar 

  77. Y. Xiang, A. Tong, Y. Lu, Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range[J]. J. Am. Chem. Soc. 131(42), 15352–15357 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. P. Song, Y. Xiang, H. Xing, et al., Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules[J]. Anal. Chem. 84(6), 2916–2922 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Y. Xiang, Z. Wang, H. Xing, et al., Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach[J]. Anal. Chem. 82(10), 4122–4129 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. W. Zhao, W. Chiuman, M.A. Brook, et al., Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation[J]. Chembiochem 8(7), 727–731 (2007)

    Article  CAS  PubMed  Google Scholar 

  81. J.L. Chávez, W. Lyon, N. Kelley-Loughnane, et al., Theophylline detection using an aptamer and DNA–gold nanoparticle conjugates[J]. Biosens. Bioelectron. 26(1), 23–28 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. S.J. Chen, Y.F. Huang, C.C. Huang, et al., Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles[J]. Biosens. Bioelectron. 23(11), 1749–1753 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. F. Li, J. Zhang, X. Cao, et al., Adenosine detection by using gold nanoparticles and designed aptamer sequences[J]. Analyst 134(7), 1355–1360 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. J. Wang, L. Wang, X. Liu, et al., A gold nanoparticle-based aptamer target binding readout for ATP assay[J]. Adv. Mater. 19(22), 3943–3946 (2007)

    Article  CAS  Google Scholar 

  85. J. Zhang, L. Wang, D. Pan, et al., Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures[J]. Small 4(8), 1196–1200 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Y.S. Kim, J.H. Kim, I.A. Kim, S.J. Lee, J. Jurng, M.B. Gu, A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens. Bioelectron. 26(4), 1644–1649 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. Y.L. Luo, J.Y. Xu, Y. Li, H.T. Gao, J.J. Guo, F. Shen, C.Y. Sun, A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54, 7–15 (2015)

    Article  CAS  Google Scholar 

  88. H.J. Gao, N. Gan, D.D. Pan, Y.J. Chen, T.H. Li, Y.T. Cao, T. Fu, A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nanoperoxidase-polymer. Anal. Methods 7(16), 6528–6536 (2015)

    Article  CAS  Google Scholar 

  89. Z.L. Mei, H.Q. Chu, W. Chen, F. Xue, J. Liu, H.N. Xu, R. Zhang, L. Zheng, Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens. Bioelectron. 39(1), 26–30 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. B. Shen, J. Li, W. Cheng, et al., Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification[J]. Microchim. Acta 182(1–2), 361–367 (2015)

    Article  CAS  Google Scholar 

  91. Q. Chen, Q. Guo, Y. Chen, et al., An enzyme-free and label-free fluorescent biosensor for small molecules by G-quadruplex based hybridization chain reaction[J]. Talanta 138, 15–19 (2015)

    Article  CAS  PubMed  Google Scholar 

  92. X. Wang, S. Dong, P. Gai, et al., Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy[J]. Biosens. Bioelectron. 82, 49–54 (2016)

    Article  CAS  PubMed  Google Scholar 

  93. N.M. Danesh, M. Ramezani, A.S. Emrani, et al., A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin[J]. Biosens. Bioelectron. 75, 123–128 (2016)

    Article  CAS  Google Scholar 

  94. D. Li, B. Shlyahovsky, J. Elbaz, et al., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme− aptamer conjugates[J]. J. Am. Chem. Soc. 129(18), 5804–5805 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. J. Elbaz, B. Shlyahovsky, D. Li, et al., Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations[J]. Chembiochem 9(2), 232–239 (2008)

    Article  CAS  PubMed  Google Scholar 

  96. C. Teller, S. Shimron, I. Willner, Aptamer− DNAzyme hairpins for amplified biosensing[J]. Anal. Chem. 81(21), 9114–9119 (2009)

    Article  CAS  PubMed  Google Scholar 

  97. Y. Du, B. Li, S. Guo, et al., G-Quadruplex-based DNAzyme for colorimetric detection of cocaine: Using magnetic nanoparticles as the separation and amplification element[J]. Analyst 136(3), 493–497 (2011)

    Article  CAS  PubMed  Google Scholar 

  98. S. Bi, B. Luo, J. Ye, et al., Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification[J]. Biosens. Bioelectron. 62, 208–213 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. L. Hao, N. Duan, S. Wu, et al., Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles[J]. Anal. Bioanal. Chem. 407(26), 7907–7915 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Biosensors for Small Molecules. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_10

Download citation

Publish with us

Policies and ethics