Skip to main content

Plant Metabolites as New Leads to Anticancer Drug Discovery: Approaches and Challenges

  • Chapter
  • First Online:
Anticancer Plants: Natural Products and Biotechnological Implements

Abstract

Cancer is one of the most life-threatening diseases widely affecting the mortality of the world’s population. Anticancer therapies such as radiation treatment, chemotherapy, and surgery have gained limited success in cancer treatment, and therefore, there is a need to develop an alternative method to treat chronic diseases like cancer. Medicinal plants and plant foods such as vegetables and fruits are in use to treat human diseases since prehistoric times because of their health-promoting effects. Certainly, there is an increased public awareness regarding the use of medicinal plants in treating human diseases as they are promising source of drugs with minimal or no side effects. Plant metabolites from various parts of medicinal plants have attracted attention of researchers and pharmaceutical industries in treating cancer due to their indispensable use with reduced side effects. With the advent of techniques such as transgenics, bioinformatics, metabolomics, and nanotechnology, plant metabolites offer opportunities to anticancer drug discovery. The use of phytochemicals, computational approaches in drug design, the efficacy and efficiency, the mode of action, and further clinical studies might provide new avenues in cancer research. Plant-derived anticancer compounds are currently being used in clinical studies and are currently being investigated phytochemically to understand their antitumor actions against various cancers. The present chapter summarizes the information on anticancer medicinal plants and their derived phytochemicals or metabolites and also on the development of plant-derived substances to treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, Bhattacharya S, Banerjee PP (2013) Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer 3:12–99

    Google Scholar 

  • Ahmad A, Sakr WA, Rahman KM (2012) Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Front Biosci 4:410–425

    Article  Google Scholar 

  • Ali I, Rahis U, Salim K, Rather MA, Wani WA, Haque A (2011) Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets 11:135–146

    Article  PubMed  CAS  Google Scholar 

  • Almagro L, Fernández-Pérez F, Angeles Pedreño M (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20:2973–3000

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972

    Article  PubMed  CAS  Google Scholar 

  • Anand C, Neetu S (2011) Contribution of world health organization in the global acceptance of Ayurveda. J Ayurv Integr Med 2:179–186

    Article  Google Scholar 

  • Andreoli F, Barbosa AJM, Parenti MD, Rio AD (2013) Modulation of epigenetic targets for anticancer therapy: Clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des 19:578–613

    Article  PubMed  CAS  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linderd T, Wawroscha C, Uhrine P, Temmlf V, Wanga L, Schwaigerb S, Heissa EH, Rollingera JM, Schusterf D, Breusse JM, Bochkovg V, Mihovilovicd MD, Koppa B, Bauerc R, Dirscha VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger A, Venturelli S, Kallnischkies M, Bocker A, Busch C, Weiland T, Noor S, Leischner C, Weiss TS, Lauer UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985

    Article  PubMed  CAS  Google Scholar 

  • Bernhoft A (2010) Bioactive compounds in plants benefits and risks for man and animals. Proceedings from a symposium held at The Norwegian Academy of Science and Letters, Oslo, 13–14 November 2008. National Veterinary Institute, Oslo, Norway, and Committee for Information and Research in Geomedicine, The Norwegian Academy of Science and Letters, Oslo

    Google Scholar 

  • Bhandari M, Bhandari A, Prakash R, Bhandari A (2010) Scutellaria baicalensis Georgi: a rising paradigm of herbal remedies. Pharm Sci 1:1–8

    Google Scholar 

  • Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, Torti SV, Shulaev V (2011) Bioinformatics tools for cancer development. Metabolomics 3:329–343

    Article  CAS  Google Scholar 

  • Bombonati A, Sgroi DC (2011) The molecular pathology of breast cancer progression. J pathology 223:307–317

    Article  CAS  Google Scholar 

  • Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigene 7:1–18

    Article  CAS  Google Scholar 

  • Campbell R, Freitag S, Bryan GJ, Stewart D, Taylor MA (2016) Environmental and genetic factors associated with solanesol accumulation in potato leaves. Front Plant Sci 7:1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha TL, Chuang MJ, Tang SH, Wu ST, Sun KH, Chen TT, Sun GH, Chang SY, Yu CP, Ho JY, Liu SY, Huang SM, Yu DS (2013) Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth. Mol Carcinog 54:167–177

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, Huang WY, Lai CH, Hsu YM, Yao YH, Chen TY (2011) Development of novel nanoparticles shelled with heparin for Berberine delivery to treat Helicobacter pylori. Acta Biomater 7:593–603

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lin X, Park H, Greever R (2009) Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine 5:316–322

    Article  PubMed  CAS  Google Scholar 

  • Chung IM, Thiruvengadam M, Rekha K, Rajakumar G (2016) Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.) Braz Arch Biol Technol 59:1–10

    Article  CAS  Google Scholar 

  • Cui L, Ni X, Ji Q, Teng X, Yang Y, Wu C, Zekria D, Zhang D, Kail G (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5:8227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  PubMed  CAS  Google Scholar 

  • Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR (2013) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloid Surf B 101:325–336

    Article  CAS  Google Scholar 

  • Dawood M, Efferth T (2015) Medicinal plants and DNA methylation of cancer. Med Aromat Plants 4:1–4

    Article  Google Scholar 

  • Diaconeasa Z, Leopold L, Rugină D, Ayvaz H, Socaciu C (2015) Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci 16:2352–2365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloid Surf B 98:112–119

    Article  CAS  Google Scholar 

  • Duwensee K, Schwaiger S, Tancevski I, Eller K, van Eck M, Markt P et al (2011) Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 219:109–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filová A, Rovna K (2011) Explantate culture of yew (Taxus sp.) as alternative production systems for taxane metabolites. Acta Hortic Regiotect 14:19–23

    Google Scholar 

  • Folashade KO, Omoregie EH, Ochogu AP (2012) Standardization of herbal medicines-a review. Int J Biodivers Conserv 4:101–112

    Google Scholar 

  • Gajalakshmi S, Vijayalakshmi S, Devi Rajeswari V (2013) Pharmacological activities of Catharanthus Roseus: a perspective review. Int J Pharm Chem Biol Sci 4:431–439

    Google Scholar 

  • Gaviraj EN, Veeresham C (2011) Enhanced alkaloid production by elicitation in hairy root cultures of Catharanthus roseus var Nimal. Indian Drugs 48:20–25

    Google Scholar 

  • Gomez-Casati DF, Zanor MI, Busi MV (2013) Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. Biomed Res Int 2013:1–13

    Article  CAS  Google Scholar 

  • Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 1:4103–4112

    Google Scholar 

  • Gupta S, Liu RB, Liaw SY, Chan HS, Tsay HS (2011) Enhanced tanshinone production in hairy roots of ‘Salvia miltiorrhiza Bunge’ under the influence of plant growth regulators in liquid culture. Bot Stud 52:435–443

    CAS  Google Scholar 

  • Hashemi M, Behrangi N, Farahani E (2014) Bioinformatic analysis for anticancer effects of flavonoids in vegetables and fruits. International conference on Biological, Civil and Environmental Engineering (BCEE-2014) 17–18th March, Dubai

    Google Scholar 

  • Heidel JD, Davis ME (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28:187–199

    Article  PubMed  CAS  Google Scholar 

  • Hein M, Zilian D, Sotriffer CA (2010) Docking compared to 3D-pharmacophores: the scoring function challenge. Drug Discov Today Technol 7:229–236

    Article  CAS  Google Scholar 

  • Hu CMJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12:1925–1956

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Lin C, Linda LD, Zhong ZL, Zhang GA, Wu J, Bian Z (2017) Targeting histone methylation for colorectal cancer. Ther Adv Gastroenterol 10:114–131

    Article  CAS  Google Scholar 

  • Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28:1–45

    Article  PubMed  CAS  Google Scholar 

  • Jena J, Gupta AK (2012) Ricinus communis Linn: a Phytopharmacological review. Int J Pharm Pharm Sci 4:25–29

    Google Scholar 

  • Kainsa S, Kumar P, Rani P (2012) Medicinal plants of Asian origin having anticancer potential: short review. Asian J Biomed Pharma Sci 2:1–7

    Google Scholar 

  • Karius T, Schnekenburger M, Dicato M, Diederich M (2012) MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol 83:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Kasliwal RR, Madhu DM, Mary Minz MD (2017) Managing cancer patients: the heart really matters. J Clinic Prev Card 6:60–67

    Google Scholar 

  • Kaur R, Kapoor K, Kaur H (2011) Plants as a source of anticancer agents. J Nat Prod Plant Resour 1:119–124

    Google Scholar 

  • Kaushal S, Arush S, Dev K (2014) In vitro plant production through apical meristem culture of Gentiana kurroo Royl. J Med Plant Stud 3:4–9

    Google Scholar 

  • Khani S, Barar J, Movafeghi A, Omdi Y (2012) Production of anticancer medicinal metabolites: impacts of bioprocess engineering. In: Orhan I (ed) Biotechnological production of plant secondary metabolites. Bentham Science Publishers, Dubai, pp 215–240

    Chapter  Google Scholar 

  • Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181

    Article  CAS  Google Scholar 

  • Kim HK, Wilson EG, Choi YH, Verpoorte R (2010) Metabolomics: a tool for anticancer lead-finding from natural products. Planta Med 76:1094–1102

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Kim SH, Jeong SJ, Sohn EJ, Jung JH, Lee MH et al (2012) Brazilin induces apoptosis and G2/M arrest via inactivation of histone deacetylase in multiple myeloma U266 cells. J Agric Food Chem 60:9882–9889

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Mishra A, Pandey AK (2013) Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Compl Altern Med 13:120

    Article  Google Scholar 

  • Kumari A, Kumar V, Yadav SK (2012) Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res 7:34–42

    Article  CAS  Google Scholar 

  • Kuppusamy P, Mafhitah MY, Gaanty PM, Goviandan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: an update report. Saudi Pharm J 24:473–484

    Article  PubMed  Google Scholar 

  • Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4:17–31

    Article  Google Scholar 

  • Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical Terpenoids. Front Plant Sci 7:1647

    Google Scholar 

  • Lustberg MB, Ramaswamy B (2010) Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 3:34–43

    Article  CAS  Google Scholar 

  • Mehta J, Upadhyay D, Paras P, Ansari R, Rathore S, Tiwari S (2013) Multiple shoots regeneration of (anti-cancer plant) Catharanthus roseus-an important medicinal plant. Am J PharmTech Res 30:785–793

    Google Scholar 

  • Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J (2014) Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metab Eng 23:136–144

    Article  PubMed  CAS  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633

    Article  PubMed  CAS  Google Scholar 

  • Mohammed A, Chiruvella KK, Rao YK, Geethangili M, Raghavan SC, Ghanta RG (2015) In vitro production of echioidinin, 7-OMethywogonin from callus cultures of Andrographis lineata and their cytotoxicity on cancer cells. PLoS One 10:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee PK, Harwansh RK, Bahadur S, Biswas S, Kuchibhatla LN, Tetali SD, Raghavendra AS (2016) Metabolomics of medicinal plants–a versatile tool for standardization of herbal products and quality evaluation of Ayurvedic formulations. Curr Sci 111:1624–1630

    Article  CAS  Google Scholar 

  • Nayak AP, Waree T, Swati P, Basavaraj M, Eliana BS (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids and Surfaces B 81:263–273

    Article  CAS  Google Scholar 

  • Nema R, Khare S, Jain P, Pradhan A, Gupta A, Singh D (2013) Natural products potential and scope for modern cancer research. Am J Plant Sci 4:1270–1277

    Article  Google Scholar 

  • Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomed Nanotechnol 2:1–2

    Article  CAS  Google Scholar 

  • Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192:119–125

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7:e43038. https://doi.org/10.1371/journal.pone.0043038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey A, Pandey G (2013) Usefulness of nanotechnology for herbal medicines. Plant Arch 13:617–621

    Google Scholar 

  • Pandey S, Bahadur AN, Kanungo K, Tiwari U (2014) In vitro propagation of a medicinal plant Catharanthus roseus L. (G.) Don. Indian. J Life Sci 4:125–128

    Google Scholar 

  • Prakash O, Kumar A, Kumar P, Ajeet (2013) Anticancer potential of plants and natural products: a review. Am J Pharmacol Sci 1:104–115

    Google Scholar 

  • Priyadarshini K, Keerthi Aparajitha U (2012) Paclitaxel against cancer: a short review. Med Chem 2:139–141

    Google Scholar 

  • Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Yalagatti MS, Bhagawanraju M, Venkataraman A (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2:57–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghvendra SV, Shakya A, Hedaytullah MD, Arya GS, Mishra A, Deo Gupta A, Pachpute AP, Patel D (2011) Chemical and potential aspects of anthocyanins-a water soluble vacuolar flavonoid pigments: A review. Int J Pharma Sci Rev Res 6:28–33

    CAS  Google Scholar 

  • Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A (2011) Oral Lipid Based Drug Delivery System (LBDDS): formulation, characterization and application: a review. Curr Drug Deliv 8:1–16

    Article  Google Scholar 

  • Raina H, Soni G, Jauhari N, Sharma N, Bharadvaja N (2014) Phytochemical importance of medicinal plants as potential sources of anticancer agents. Turk J Bot 38:1027–1035

    Article  Google Scholar 

  • Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202

    Article  Google Scholar 

  • Rajkumar M, Harish Chandra R, Veeresham C (2010) Production of Nitidine from callus cultures of Toddalia asiatica. Int J of Pharm Sci Nanotech 2:1028–1033

    Google Scholar 

  • Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan SH (2016) Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidat Med Cell Longe 2016:3685671. https://doi.org/10.1155/2016/3685671

    Article  CAS  Google Scholar 

  • Rathinamoorthy R, Thilagavathi G (2014) Terminalia Chebula review on pharmacological and biochemical studies. Int J PharmTech Res 6:97–116

    Google Scholar 

  • Rietjens IM, Sotoca AM, Vervoort J, Louisse J (2013) Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res 57:100–113

    Article  PubMed  CAS  Google Scholar 

  • Ritala A, Dong L, Imseng N, Seppänen-Laakso T, Vasilev N, van der Krol S, Maaheimo H, Virkki A, Brändli J, Schillberg S, Eibl R, Bouwmeester H, Oksman-Caldentey KM (2014) Evaluation of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J Biotechnol 176:20–28

    Article  PubMed  CAS  Google Scholar 

  • Robinson MM, Zhang X (2011) The world medicines situation 2011 traditional medicines: global situation, issues and challenges. World Health Organization, Geneva, pp 1–12

    Google Scholar 

  • Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65:213–249

    Google Scholar 

  • Romagnolo DF, Selmin OI (2012) Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 31:206–238

    Article  PubMed  Google Scholar 

  • Saikia M, Handique PJ (2014) In vitro propagation of Acalypha indica Linn: a medicinally important plant. Int J Life Sci Biotechnol Pharm Res 3:85–93

    Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Stock R, Ghantous A, Bajbouj K, Saikali M, Darwiche N (2012) Epigenetic mechanisms of plant-derived anticancer drugs. Front Biosci 17:129–173

    Article  CAS  Google Scholar 

  • Schnekenburger M, Dicato M, Diederich M (2014) Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv 32:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Serkova NJ, Glunde K (2009) Metabolomics of cancer. Methods Mol Biol 520:273–295

    Article  PubMed  CAS  Google Scholar 

  • Shabani A (2015) A review of anticancer properties of herbal medicines. J Pharma Care Health Sys 3:1–4

    Google Scholar 

  • Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herb Med 4:59–64

    Google Scholar 

  • Sharma V (2013) Part based HPLC-PDA quantification of Podophyllotoxin in populations of Podophyllum hexandrum Royle indian Mayapple from higher altitude himalayas. J Med Plants Studies 1:176–183

    Google Scholar 

  • Sharma V, Sarkar IN (2012) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14:238–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheikhpour S, Yadollahi P, Fakheri BA, Amiri A (2014) Biotechnological strategies for conservation of rare medicinal plants. I Intl J Agri Crop Sci 7:79–82

    Google Scholar 

  • Shen B (2015) A new golden age of natural products drug discovery. Cell 163:1297–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiyou L, Wanli Z (2014) Ethnobotany of Camptotheca decaisne: new discoveries of old medicinal uses. Pharmaceutical Crops 5:140–145

    Article  Google Scholar 

  • Shoeb M, Celik S, Jaspars M, Kumarasamy Y, MacManus S, Nahar L, Kong TLP, Sarker SD (2006) Isolation, structure elucidation and bioactivity of schischkiniin, a unique indole alkaloid from the seeds of Centaurea schischkinii. Tetrahedron 61:9001–9006

    Article  CAS  Google Scholar 

  • Siahsar B, Rahimi M, Tavassoli A, Raissi AS (2011) Application of biotechnology in production of medicinal plants. American-Eurasian J Agric Environ Sci 11:439–444

    CAS  Google Scholar 

  • Singh R, Tiwari S, Tawaniya J (2013) Review on nanotechnology with several aspects. Int J Res Comput Eng Electron 2:1–8

    Google Scholar 

  • Song YH, Sun H, Zhang A-H, Yan G, Han Y, Wang X (2014) Plant-derived natural products as leads to anti-cancer drugs. J Med Plants Herbal Ther Res 2:6–15

    Google Scholar 

  • Steindl TM, Schuster D, Laggner C, Chuang K, Hoffmann RD, Langer T (2007) Parallel screening and activity profiling with HIV protease inhibitor pharmacophore models. J Chem Inf Model 47:563–571

    Article  PubMed  CAS  Google Scholar 

  • Suman TY, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106:74–78

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Manmathan H, Sun C, Peebles CAM (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16:108. https://doi.org/10.1186/s12870-016-0794-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teiten MH, Dicato M, Diederich M (2013) Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57:1619–1629

    Article  PubMed  CAS  Google Scholar 

  • Thakur VS, Deb G, Babcook MA, Gupta S (2014) Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J 16:151–163

    Article  PubMed  CAS  Google Scholar 

  • Thingujam D, Rekha K, Megala J, Usha B (2015) Antioxidant and anticancer properties of Catharanthus pusillus. Int J Adv Che Sci App 3:48–51

    Google Scholar 

  • Tomassini A, Sciubba F, Di Cocco ME, Capuani G, Delfini M, Aureli W, Miccheli A (2016) One H NMR based metabolomics reveal pedoclimatic metabolic imprinting in ready to drink Carrot juices. J Agric Food Chem 64:5284–5291

    Article  PubMed  CAS  Google Scholar 

  • Umadevi M, Rajeswari R, Sharmila Rahale C, Selvavenkadesh S, Pushpa R, Sampath KP, Bhowmik D (2012) Traditional and medicinal uses of Withania somnifera. Pharma Innov 1:102–110

    Google Scholar 

  • Veeck J, Esteller M (2010) Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 15:5–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Veeresham C, Chitti P (2013) Therapeutic agents from tissue cultures of medicinal plants. Nat Prod Chem Res 1:1–5

    Article  Google Scholar 

  • Verma M, Banerjee HN (2015) Metabolomic approaches in cancer epidemiology. Diseases 3:167–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wassim NS, El-Sibai M, Kikki B-S, Marc CK, Mohamad M, Costantine FD (2013) The antioxidant and anticancer effects of wild carrot oil extract. Phytother Res 27:737–744

    Article  Google Scholar 

  • Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein-ligand docking and structure-based virtual screening. Wiley Interdiscip Rev Comput Mol Sci 1:229–259

    Article  CAS  Google Scholar 

  • Wink M (2010) Annual plant reviews. In: Wink M (ed) Introduction: Biochemistry, physiology and ecological functions of secondary metabolites. Wiley, Chichester, pp 1–19

    Google Scholar 

  • Wojakowska A, Chekan M, Widlak P, Pietrowska M (2015) Application of metabolomics in thyroid cancer research. Int J Endocrinol 2015:258763. https://doi.org/10.1155/2015/258763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolber G, Rollinger JM (2013) Virtual screening and target fishing for natural products using 3D pharmacophores. In: Edgar J (ed) Computational Chemogenomics. Pan Stanford Publishing Pvt Ltd, Singapore, pp 117–139

    Chapter  Google Scholar 

  • Wurtele EV, Chappell J, Jones AD, Celiz MD, Ransom N, Hur M, Rizschsky L, Crispin M, Dixon P, Liu J, Widrlechher MP, Nikolau BJ (2012) Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites 2:1031–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav A, Ghune M, Jain DK (2011) Nano-medicine based drug delivery system. J Adv Pharm Educ Res 1:201–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Satish Datir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datir, S.S. (2018). Plant Metabolites as New Leads to Anticancer Drug Discovery: Approaches and Challenges. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Natural Products and Biotechnological Implements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8064-7_7

Download citation

Publish with us

Policies and ethics