Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 405 Accesses

Abstract

In this chapter, we discuss requirement of nuclear data from the point of accuracy and sectorial demand of different kinds of data for the development of the ADSS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Atta, C.M., Lee, J.D., Heckrotte, W: The electronuclear conversion of fertile to fissile material UCRL 52144, Oct 1976 and Van Atta, C.M.: A brief history of the MTA project. In: Proceedings of Information Meeting on Accelerator-Breeding, BNL Upton, New York, pp. 7–29, 18–19 Jan 1997. CONF-770107

    Google Scholar 

  2. Bartholomew, G.A., Tunnicliffe, P.R.: The AECL Study for an Intense Neutron Generator AECL-2600 (1966)

    Google Scholar 

  3. Knebel, J.U., Heusener, G.: Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe. Internationale Zeitschrift für Kernenergie Atw Jg. (2000) Heft 6 (2000) 350

    Google Scholar 

  4. Ikeda, Y.: Nuclear Data Relevant to accelerator driven system. Nucl. Sci. Technol. 39(Supplement 2), 13–18 (2002)

    Article  Google Scholar 

  5. Plompen, A.: Why do We Still Need Nuclear Data. https://www.oecd-nea.org/science/meetings/pnd22/presentations/1-PLOMPEN.pdf

  6. Koning, A.J., et al.: Nuclear data for accelerator driven systems. Nuclear models, experiments and data libraries. Nucl. Instrm. Meth. A414, 49 (1998)

    Article  Google Scholar 

  7. Leray, S.: Nuclear reactions at high energy. Lectures Delivered at the Workshop on Nuclear Data for Science and Technology, Accelerator Driven Waste Incineration, Trieste (2001). http://users.ictp.it/~pub_off/lectures/lns012/Leray.pdf

  8. MONC: Monte Carlo Nucleon Transport Code. http://bts.barc.gov.in/AuthStatic/auth_static.php/npd/monc/index.html

  9. Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72(11), 1114 (1947) and Domengetroy, V.B.: Investigations Related to the Generation of Reaction Products in the Target of Accelerator Driven Systems for Nuclear Waste Incineration, FZKA 6908 (2003)

    Article  Google Scholar 

  10. Parel, R.E., Lichtenstein, H.: User Guide to LCS: The LAHET Code System, Report LA-UR-89-3014 (1989)

    Google Scholar 

  11. Glasbrenner, H., et al.: Polonium formation in Pb–55.5Bi under proton irradiation, J. Nucl. Mat. 335, 270 (2004)

    Article  Google Scholar 

  12. Artisyuk, V., Saito, M., Sawada, T.: Current status of spallation product data: Nuclear engineering view-point. In: JAERI-Conference, p. 27 (2004–05). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/116/36116662.pdf

  13. Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. OECD NEA Report (2002). ISBN 92-64-18482-1

    Google Scholar 

  14. Amaya, L.O., Braet, J.: Purification of lead-bismut eutectic used in accelerator driven systems—9411. In: WM2009 Conference, Phoenix, AZ, 1–5 Mar 2009

    Google Scholar 

  15. Gromov, B.F., et al.: Liquid-metal lead-bismuth target for high-energy protons as an intense source of neutrons in accelerator-controlled systems. At. Energ. 80(5), 378 (1996)

    Article  Google Scholar 

  16. Buongiorno, J., Larson, C.L., Czerwinski, K.R.: Discussion on Polonium Extraction System for Pb-Bi cooled Reactors. Report FR0202114. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/031/33031171.pdf

  17. Sugawara, T., et al.: Conceptual design study of beam window for accelerator-driven system, J. Nucl. Sci. Technol. 47, 953 (2010)

    Article  Google Scholar 

  18. Wang, H.: Design of high power graphene beam window. In: MOOCA 03, Proceedings of IPAC 2014, Dresden, Germany, p. 45. ISBN 978-3-95450-132-8

    Google Scholar 

  19. http://www.nndc.bnl.gov, http://www-nds.iaea.org/, http://www.nea.fr/dbdata/data/manual-endf/BNL-90365-2009.pdf

  20. Shibata, K., et al.: JENDL -4.0: A new library for innovative nuclear energy systems. In: Proceedings of the International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea (ND-2010). http://wwwndc.jaea.go.jp/jendl/j40/j40.html. Accessed 26–30 Apr 2010

  21. Jacqmin, R., et al.: Status of the JEFF-3 project. In: Proceedings of the International Conference on Nuclear Data for Science and Technology, vol. 1, p. 54 (2002). https://www.nea.fr/dbforms/data/eva/evatapes/jeff_31/

    Article  Google Scholar 

  22. http://www.ippe.ru/podr/abbn/libr/rosfond.php

  23. http://www.talys.eu/tendl-2009/. ftp:/nrg.eu/pub/www/talys/tendl-2009beta/Document/wonder09_rochman.pdf

  24. Shubin, Y.N., et al.: Cross Section Data Library MENDL-2 to Study Activation as Transmutation of Materials Irradiated by Nucleons of Intermediate Energies. Report INDC (CCP)-385, International Atomic Energy Agency, May 1995

    Google Scholar 

  25. Koning, A.J., et al.: Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, 26 Sept–1 Oct 2004 and www.talys.eu/

  26. Yamano, N.: Tables of isotope production cross-sections (ACSELAM Library). (Sumitomo Atomic Energy). http://wwwndc.jaea.go.p/ftpnd/sae/acl.html. Also see Fukahori, T.: ALICE-F calculation of nuclear data up to 1 GeV. In: Proceedings of the Specialists Meeting on High Energy Nuclear Data, Tokai, p. 114, 3–4 Oct 1991, JAERI-M 92-039 (1992)

  27. Barashenkov, V.S., Toneev, V.D.: Interaction of High Energy particles and Nuclei with Nuclei. Atomizdat, Moscow (1972)

    Google Scholar 

  28. Bhatia, C., Kumar, V.: Role of (n, xn) Reactions in ADSS. Lambert Academic Publishing (2011)

    Google Scholar 

  29. Taneike, M., et al.: Creep-Strengthening of Steel at High Temperatures using Nano-Sized Carbonitride Dispersions. Nature 424, 294 (2003)

    Article  Google Scholar 

  30. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, NEA. https://www.oecd-nea.org/science/pubs/2015/7268-lead-bismuth-2015.pdf

  31. Abe, F., et al.: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Mater. Sci. Eng., A 378, 299 (2004)

    Article  Google Scholar 

  32. Jianu, A., et al.: Creep-to-rupture tests of T91 steel in flowing Pb–Bi eutectic melt at 550 °C,   J. Nucl. Mat. 394, 102 (2009)

    Article  Google Scholar 

  33. Mantha, V., Mohanty, A.K., Satyamurthy, P.: Thermal hydraulic studies of spallation target for one-way coupled indian accelerator driven systems with low energy proton beam. Pramana J. Phys. 68, 355 (2007)

    Article  Google Scholar 

  34. https://www-nds.iaea.org/public/download-endf/DXS/Gas_Production_XS/DXS. (2015)/Files/

  35. Konobeyev, A.Y., et al.: Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons. In: EPJ Web of Conferences, vol. 146, p. 02018 (2017). Accessed https://doi.org/10.1051/epjconf/201714602018

    Article  Google Scholar 

  36. Konobeyev, A.Y., Fischer, U.: Complete gas production data library for nuclides from Mg to Bi at neutron incident energies up to 200 MeV. KIT Scientific Working Papers 36 (2015). ISSN: 2194-1629

    Google Scholar 

  37. https://www-nds.iaea.org/public/downloadendf/DXS/Displacement_XS/DXS3000. (2011) /Files/

  38. Konobeyev, A.Y., Fischer, U.: Advanced evaluations of displacement and gas production cross sections for chromium, iron, and nickel up to 3 Gev incident particle energy. https://www-nds.iaea.org/public/downloadendf/DXS/Displacement_XS/DXS3000(2011)/Description_of_methods/DXS_AccApp11.pdf

  39. Konobeyev, A.Y., et al.: Improved displacement cross sections for structural materials irradiated with intermediate and high energy protons. https://www-nds.iaea.org/public/downloadendf/DXS/Displacement_XS/DXS3000.(2011)/Description_of_methods/DXS_AccApp07.pdf

  40. Konobeyev, A.Y., et al.: Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons. In: EPJ Web of Conferences, vol. 146, p. 02018 (2017). Accessed https://doi.org/10.1051/epjconf/201714602018

    Article  Google Scholar 

  41. OECD/NEA, Working Party on Multiscale Modelling of Fuels and Structural Materials for Nuclear Systems, Expert Group on Primary Radiation Damage. Primary radiation Damage in Materials. www.oecd-nea.org. NEA/NSC/DOC, 9 (2015)

  42. Sosin, A., Bauer, W.: Atomic displacement mechanisms in metals and semiconductors. In: Dienes, G.J. (ed.) Studies in Radiation Effects in Solids, vol. 3, pp. 153–357. Gordon and Breach, New York (1969)

    Google Scholar 

  43. Drosd, R., Kosel, T., Washburn, J.: Temperature dependence of the threshold energy for Frenkel pair production in copper. J. Nucl. Mater. 69–70, 804 (1978)

    Article  Google Scholar 

  44. Roth, G., et al.: Energy dependence of the defect production at 78 °K and 400 °K in electron irradiated copper. Radiat. Effects 26, 141 (1975)

    Article  Google Scholar 

  45. Lucasson, P.: The production of Frenkel defects in metals. In: Robinson, M.T., Young Jr., F.N. (eds.) Fundamental Aspects of Radiation Damage in Metals. Oak Ridge National Laboratory, United States, pp. 42–65

    Google Scholar 

  46. Ganesan, S.: Nuclear data requirements for accelerator driven sub-critical systems—a roadmap in Indian context. Pramana J. Phys. 68, 257 (2007)

    Article  Google Scholar 

  47. Ganesan, S.: Nuclear data needed to develop new nuclear systems, role of n_TOF facilities to measure resonance cross-sections and nuclear data needs of thorium fuel cycle. In: Nuclear Physics and Astrophysics at CERN-NuPAC, Invited Oral Contribution, 10–12 Oct 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Verma .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, V.K., Katovsky, K. (2019). Requirement of Nuclear Data. In: Spent Nuclear Fuel and Accelerator-Driven Subcritical Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7503-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7503-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7502-5

  • Online ISBN: 978-981-10-7503-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics