Skip to main content

RANS Simulations of Premixed Turbulent Flames

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

While Reynolds-Averaged Navier-Stokes (RANS) simulations are widely used in applied research into premixed turbulent burning in spark ignition piston engines and gas-turbine combustors, fundamental challenges associated with modeling various unclosed terms in the RANS transport equations that describe premixed flames have not yet been solved. These challenges stem from two kinds of phenomena. First, thermal expansion due to heat release in combustion reactions affects turbulent flow and turbulent transport. Such effects manifest themselves in the so-called counter gradient turbulent transport, flame-generated turbulence, hydrodynamic instability of premixed combustion, etc. Second, turbulent eddies wrinkle and stretch reaction zones, thus, increasing their surface area and changing their local structure. Both the former effects, i.e. the influence of combustion on turbulence, and the latter effects, i.e. the influence of turbulence on combustion, are localized to small scales unresolved in RANS simulations and, therefore, require modeling. In the present chapter, the former effects, their physical mechanisms and manifestations, and approaches to modeling them are briefly overviewed, while discussion of the latter effects is more detailed. More specifically, the state-of-the-art of RANS modeling of the influence of turbulence on premixed combustion is considered, including widely used approaches such as models that deal with a transport equation for the mean Flame Surface Density or the mean Scalar Dissipation Rate. Subsequently, the focus of discussion is placed on phenomenological foundations, closed equations, qualitative features, quantitative validation, and applications of the so-called Turbulent Flame Closure (TFC) model and its extension known as Flame Speed Closure (FSC) model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is worth remembering that the pressure in a turbulent flow always fluctuates with time, but the magnitude of such fluctuations is much smaller than the mean pressure if the Mach number is low. Here, term “iso-baric case” means that the mean pressure does not depend on time.

  2. 2.

    Premixed turbulent flame brush is a spatial volume where the probabilities of finding \(c=0\) and \(c=1\) are both less than unity.

  3. 3.

    If the curl operator is applied to the Navier–Stokes equations, then, the pressure gradient term vanishes, because \(\nabla \times \nabla q \equiv 0\) for any scalar quantity q.

  4. 4.

    In the case of a single-step chemistry, the local burning rate in an adiabatic laminar premixed flame is not affected by the flame curvature or the local strain rate if (i) the activation temperature of the combustion reaction is asymptotically high, i.e., \(\varTheta /T_b \gg 1\), and (ii) the mixture is equidiffusive, i.e., \(D_F=D_O=\kappa \), e.g., see a review paper by Clavin (1985).

  5. 5.

    Within the framework of the classical thermal theory of laminar premixed combustion (Zel’dovich et al. 1985), a laminar flame consists of a preheat zone, where the reaction rate vanishes, and a significantly thinner reaction zone which heat release is localized to.

  6. 6.

    Curvature is considered to be positive or negative if the curvature center is in burned or unburned gas, respectively.

  7. 7.

    A product of \(\rho |\nabla c|\) is mathematically meaningless in the case of an infinitely thin flame front, because both \(\rho \) and \(|\nabla c|\) are discontinuous at the front.

  8. 8.

    There is the same function in Table 6.1 also.

  9. 9.

    This feature of premixed turbulent burning will be discussed in Sect. 6.4.4.

References

  • Abdel-Gayed RG, Al-Khishali KJ, Bradley D (1984) Turbulent burning velocities and flame straining in explosions. Proc R Soc Lond A 391:391–414

    Article  Google Scholar 

  • Atashkari K, Lawes M, Sheppard CGW, Woolley R (1999) Towards a general correlation of turbulent premixed flame wrinkling. In: Rodi W, Laurence D (eds) Engineering turbulence modelling and measurements 4. In: Proceedings of 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio, Corsica, France, 24–26 May, 1999, pp 805–814

    Google Scholar 

  • Bailly P, Champion M, Garreton D (1997) Counter-gradient diffusion in a confined turbulent premixed flame. Phys Fluids 9:766–775

    Article  Google Scholar 

  • Bilger RW, Pope SB, Bray KNC, Driscoll JF (2005) Paradigms in turbulent combustion research. Proc Combust Inst 30:21–42

    Article  Google Scholar 

  • Borghi R (1990) Turbulent premixed combustion: further discussions of the scales of fluctuations. Combust Flame 80:304–312

    Article  Google Scholar 

  • Boudier P, Henriot S, Poinsot T, Baritaud T (1992) A model for turbulent flame ignition and propagation in spark ignition engines. Proc Combust Inst 24:503–510

    Article  Google Scholar 

  • Boughanem H, Trouvé A (1998) The domain of influence of flame instabilities in turbulent premixed combustion. Proc Combust Inst 27:971–978

    Article  Google Scholar 

  • Bradley D (1992) How fast can we burn? Proc Combust Inst 24:247–262

    Article  Google Scholar 

  • Bradley D (2002) Problems of predicting turbulent burning rates. Combust Theory Model 6:361–382

    Article  Google Scholar 

  • Bradley D, Lau AKC, Lawes M (1992) Flame stretch rate as a determinant of turbulent burning velocity. Philos Trans R Soc Lond A 338:359–387

    Article  Google Scholar 

  • Bradley D, Lawes M, Sheppard CGW (1994a) Study of turbulence and combustion interaction: measurement and prediction of the rate of turbulent burning. Report, University of Leeds

    Google Scholar 

  • Bradley D, Lawes M, Scott MJ, Mushi EMJ (1994b) Afterburning in spherical premixed turbulent explosions. Combust Flame 99:581–590

    Google Scholar 

  • Bradley D, Gaskell PH, Gu XJ, Sedaghat A (2005) Premixed flamelet modelling: factors influencing the turbulent heat release rate source term and the turbulent burning velocity. Combust Flame 143:227–245

    Article  Google Scholar 

  • Bray KNC (1979) The interaction between turbulence and combustion. Proc Combust Inst 17:223–233

    Article  Google Scholar 

  • Bray KNC (1980) Turbulent flows with premixed reactants. In: Libby PA, Williams FA (eds) Turbulent reacting flows. Springer, Berlin

    Google Scholar 

  • Bray KNC (1987) Methods of including realistic chemical reaction mechanisms in turbulent combustion models. In: Warnatz J, Jager W (ed) Complex chemical reaction systems. Mathematical modelling and simulation. Springer, Heidelberg

    Google Scholar 

  • Bray KNC (1990) Studies of the turbulent burning velocity. Proc R Soc Lond A 431:315–335

    Article  Google Scholar 

  • Bray KNC (1995) Turbulent transport in flames. Proc R Soc Lond A 451:231–256

    Article  MathSciNet  MATH  Google Scholar 

  • Bray KNC (1996) The challenge of turbulent combustion. Proc Combust Inst 26:1–26

    Article  Google Scholar 

  • Bray KNC, Moss JB (1977) A unified statistical model for the premixed turbulent flame. Acta Astronaut 4:291–319

    Article  Google Scholar 

  • Bray KNC, Cant RS (1991) Some applications of Kolmogorov’s turbulence research in the field of combustion. Proc R Soc Lond A 434:217–240

    Article  MATH  Google Scholar 

  • Bray KNC, Libby PA, Moss JB (1985) Unified modeling approach for premixed turbulent combustion—Part I: General formulation. Combust Flame 61:87–102

    Article  Google Scholar 

  • Bray KNC, Champion M, Libby PA, Swaminathan N (2006) Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust Flame 146:665–667

    Article  Google Scholar 

  • Brodkey RS (1967) The phenomena of fluid motions. Addison-Wesley Publishing Company, London

    Google Scholar 

  • Burluka AA, Griffiths JF, Liu K, Orms M (2009) Experimental studies of the role of chemical kinetics in turbulent flames. Combust Explos Shock Waves 45:383–391

    Article  Google Scholar 

  • Candel S, Poinsot T (1990) Flame stretch and the balance equation for the flame area. Combust Sci Technol 170:1–15

    Article  Google Scholar 

  • Candel S, Veynante D, Lacas F, Maistret E, Darabiha N, Poinsot T (1990) Coherent flame model: applications and recent extensions. In: Larrouturou BE (ed) Advances in combustion modeling. World Scientific, Singapore

    Google Scholar 

  • Cant RS, Pope SB, Bray KNC (1990) Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc Combust Inst 23:809–815

    Article  Google Scholar 

  • Chakraborty N, Champion M, Mura A, Swaminathan N (2011) Scalar-dissipation-rate approach. In: Swaminathan N, Bray KNC (eds) Turbulent premixed flames. Cambridge University Press, Cambridge

    Google Scholar 

  • Chaudhuri S, Akkerman V, Law CK (2011) Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys Rev E 84:026322

    Article  Google Scholar 

  • Cheng RK, Shepherd IG (1991) The influence of burner geometry on premixed turbulent flame propagation. Combust Flame 85:7–26

    Article  Google Scholar 

  • Cheng WK, Diringer JA (1991) Numerical modelling of SI engine combustion with a flame sheet model. SAE Paper 910268

    Google Scholar 

  • Cho P, Law CK, Cheng RK, Shepherd IG (1988) Velocity and scalar fields of turbulent premixed flames in stagnation flow. Proc Combust Inst 22:739–745

    Article  Google Scholar 

  • Choi CR, Huh KY (1998) Development of a coherent flamelet model for spark-ignited turbulent premixed flame in a closed vessel. Combust Flame 114:336–348

    Article  Google Scholar 

  • Chowdhury BR, Cetegen BM (2017) Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames. Combust Flame 178:311–328

    Article  Google Scholar 

  • Clavin P (1985) Dynamical behavior of premixed flame fronts in laminar and turbulent flows. Prog Energy Combust Sci 11:1–59

    Article  Google Scholar 

  • Clavin P, Williams FA (1979) Theory of premixed-flame propagation in large-scale turbulence. J Fluid Mech 90:589–604

    Article  MATH  Google Scholar 

  • Cohé C, Chauveau C, Gökalp I, Kurtuluş DF (2009) CO\(_2\) addition and pressure effects on laminar and turbulent lean premixed CH\(_4\) air flames. Proc Combust Inst 32:1803–1810

    Article  Google Scholar 

  • Damköhler G (1940) Der einfuss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z Electrochem 46:601–652

    Google Scholar 

  • Darrieus G (1938) Propagation d’un front de flamme. Presented at La Technique Moderne (Paris) and in 1945 at Congrés de Mećanique Appliqueé (Paris)

    Google Scholar 

  • Dasgupta D, Sun W, Day M, Lieuwen T (2017) Effect of turbulence-chemistry interactions on chemical pathways for turbulent hydrogen-air premixed flames. Combust Flame 176:191–201

    Article  Google Scholar 

  • Dinkelacker F (2002) Numerical calculation of turbulent premixed flames with an efficient turbulent flame speed closure model. In: Breuer M, Durst F, Zenger C (eds) High-performance scientific and engineering computing. Lecture notes in computational science and engineering, vol 21, pp 81–88

    Google Scholar 

  • Dinkelacker F, Hölzler S (2000) Investigation of a turbulent flame speed closure approach for premixed flame calculations. Combust Sci Technol 158:321–340

    Article  Google Scholar 

  • Duclos JM, Veynante D, Poinsot T (1993) A comparison of flamelet models for premixed turbulent combustion. Combust Flame 95:101–117

    Article  Google Scholar 

  • Fichot F, Lacas F, Veynante D, Candel S (1993) One-dimensional propagation of a premixed turbulent flame with a balance equation for the flame surface density. Combust Sci Technol 90:35–60

    Article  Google Scholar 

  • Fogla N, Creta F, Matalon M (2017) The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust Flame 175:155–169

    Article  Google Scholar 

  • Frank JH, Kalt PAM, Bilger RW (1999) Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust Flame 116:220–232

    Article  Google Scholar 

  • Ghirelli F (2011) Turbulent premixed flame model based on a recent dispersion model. Comput Fluids 44:369–376

    Article  MathSciNet  MATH  Google Scholar 

  • Giovangigli V (1999) Multicomponent flow modeling. Springer, Berlin

    Book  MATH  Google Scholar 

  • Goix P, Paranthoen P, Trinité M (1990) A tomographic study of measurements in a V-shaped H\(_2\)-air flame and a Lagrangian interpretation of the turbulent flame brush thickness. Combust Flame 81:229–241

    Article  Google Scholar 

  • Gouldin FC, Miles PC (1995) Chemical closure and burning rates in premixed turbulent flames. Combust Flame 100:202–210

    Article  Google Scholar 

  • Goulier J, Comandini A, Halter F, Chaumeix N (2017) Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proc Combust Inst 36:2823–2832

    Article  Google Scholar 

  • Griebel P, Siewert P, Jansohn P (2007) Flame characteristics of turbulent lean premixed methane/air flames at high-pressure: turbulent flame speed and flame brush thickness. Proc Combust Inst 31:3083–3090

    Article  Google Scholar 

  • Hinze JO (1975) Turbulence, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  • Huang C, Yasari E, Johansen LCR, Hemdal S, Lipatnikov AN (2016) Application of flame speed closure model to RANS simulations of stratified turbulent combustion in a gasoline direct-injection spark-ignition engine. Combust Sci Technol 188:98–131

    Article  Google Scholar 

  • Karlovitz B, Denniston DW, Wells FE (1951) Investigation of turbulent flames. J Chem Phys 19:541–547

    Article  Google Scholar 

  • Karpov VP, Severin ES (1980) Effects of molecular-transport coefficients on the rate of turbulent combustion. Combust Explos Shock Waves 16:41–46

    Article  Google Scholar 

  • Karpov VP, Lipatnikov AN (1995) An effect of molecular thermal conductivity and diffusion on premixed combustion. Doklady Phys Chemistry 341:83–85

    Google Scholar 

  • Karpov VP, Lipatnikov AN, Zimont, (1996) A test of an engineering model of premixed turbulent combustion. Proc Combust Inst 26:249–257

    Google Scholar 

  • Karpov VP, Lipatnikov AN, Zimont (1997) Flame curvature as a determinant of preferential diffusion effects in premixed turbulent combustion. In: Sirignano WA, Merzhanov AG, De Luca L (eds) Advances in combustion science: In honor of Ya.B. Zel’dovich. Prog Astronaut Aeronaut 173:235-250

    Google Scholar 

  • Kha KQN, Robin V, Mura A, Champion M (2016) Implications of laminar flame finite thickness on the structure of turbulent premixed flames. J Fluid Mech 787:116–147

    Article  MathSciNet  MATH  Google Scholar 

  • Kheirkhah S, Gülder ÖL (2013) Turbulent premixed combustion in V-shaped flames: characteristics of flame front. Phys Fluids 25:055107

    Article  Google Scholar 

  • Kheirkhah S, Gülder ÖL (2014) Influence of edge velocity on flame front position and displacement speed in turbulent premixed combustion. Combust Flame 161:2614–2626

    Article  Google Scholar 

  • Kheirkhah S, Gülder ÖL (2015) Consumption speed and burning velocity in counter-gradient and gradient diffusion regimes of turbulent premixed combustion. Combust Flame 162:1422–1439

    Article  Google Scholar 

  • Kim SH (2017) Leading points and heat release effects in turbulent premixed flames. Proc Combust Inst 36:2017–2024

    Article  MathSciNet  Google Scholar 

  • Kobayashi H, Tamura T, Maruta K, Niioka T, Williams FA (1996) Burning velocity of turbulent premixed flames in a high-pressure environment. Proc Combust Inst 26:389–396

    Article  Google Scholar 

  • Kuznetsov VR (1975) Certain peculiarities of movement of a flame front in a turbulent flow of homogeneous fuel mixtures. Combust Explos Shock Waves 11:487–493

    Article  Google Scholar 

  • Kuznetsov VR, Sabelnikov VA (1990) Turbulence and combustion. Hemisphere Publ Corp, New York

    Google Scholar 

  • Landau LD (1944) On the theory of slow combustion. Acta Psysicochim USSR 19:77–85

    Google Scholar 

  • Lapointe S, Blanquart G (2016) Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust Flame 167:294–307

    Article  Google Scholar 

  • Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, London

    MATH  Google Scholar 

  • Law CK (2006) Combustion physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee B, Choi CR, Huh KY (1998) Application of the coherent flamelet model to counterflow turbulent premixed combustion and extinction. Combust Sci Technol 138:1–25

    Article  Google Scholar 

  • Li SC, Libby PA, Williams FA (1994) Experimental investigation of a premixed flame in an impinging turbulent stream. Proc Combust Inst 25:1207–1214

    Article  Google Scholar 

  • Libby PA (1975) On the prediction of intermittent turbulent flows. J Fluid Mech 68:273–295

    Article  Google Scholar 

  • Libby PA, Bray KNC (1977) Variable density effects in premixed turbulent flames. AIAA J 15:1186–1193

    Article  Google Scholar 

  • Libby PA, Bray KNC (1981) Countergradient diffusion in premixed turbulent flames. AIAA J 19:205–213

    Article  Google Scholar 

  • Libby PA, Williams FA (1994) Fundamental aspects and a review. In: Libby PA, Williams FA (eds) Turbulent reactive flows. Academic Press, London

    Google Scholar 

  • Lindstedt RP, Váos EM (1999) Modeling of premixed turbulent flames with second moment methods. Combust Flame 116:461–485

    Article  Google Scholar 

  • Lipatnikov AN (2009a) Can we characterize turbulence in premixed flames? Combust Flame 156:1242–1247

    Google Scholar 

  • Lipatnikov AN (2009b) Testing premixed turbulent combustion models by studying flame dynamics. Int J Spray Combust Dyn 1:39–66

    Google Scholar 

  • Lipatnikov AN (2011a) Conditioned moments in premixed turbulent reacting flows. Proc Combust Inst 33:1489–1496

    Google Scholar 

  • Lipatnikov AN (2011b) Transient behavior of turbulent scalar transport in premixed flames. Flow Turbul Combust 86:609–637

    Google Scholar 

  • Lipatnikov AN (2012) Fundamentals of premixed turbulent combustion. CRC Press, Boca-Raton, Florida

    Book  Google Scholar 

  • Lipatnikov AN, Chomiak J (1997) A simple model of unsteady turbulent flame propagation. SAE Paper 972993

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2000a) Transient and geometrical effects in expanding turbulent flames. Combust Sci Technol 154:75–117

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2000b) Dependence of heat release on the progress variable in premixed turbulent combustion. Proc Combust Inst 28:227–234

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2001) Developing premixed turbulent flames: Part I. A self-similar regime of flame propagation. Combust Sci Technol 162:85–112

    Article  Google Scholar 

  • Lipatnikov AN, Chomiak J (2002) Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog Energy Combust Sci 28:1–74

    Article  Google Scholar 

  • Lipatnikov AN, Chomiak J (2004) Comment on “Turbulent burning velocity, burned gas distribution, and associated flame surface definition” Bradley D, Haq MZ, Hicks RA, Kitagawa T, Lawes M, Sheppard CGW, Woolley R, Combust Flame, 133:415 (2003). Combust Flame 137:261–263

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2005a) A theoretical study of premixed turbulent flame development. Proc Combust Inst 30:843–850

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2005b) Self-similarly developing, premixed, turbulent flames: a theoretical study. Phys Fluids 17:065105

    Google Scholar 

  • Lipatnikov AN, Chomiak J (2005c) Molecular transport effects on turbulent flame propagation and structure. Prog Energy Combust Sci 31:1–73

    Google Scholar 

  • Lipatnikov AN, Sathiah P (2005) Effects of turbulent flame development on thermoacoustic oscillations. Combust Flame 142:130–139

    Article  Google Scholar 

  • Lipatnikov AN, Chomiak J (2010) Effects of premixed flames on turbulence and turbulent scalar transport. Prog Energy Combust Sci 36:1–102

    Article  Google Scholar 

  • Lipatnikov AN, Wallesten J, Nisbet J (1998) Testing of a model for multi-dimensional computations of turbulent combustion in spark ignition engines. In: Proc Fourth Int Symp Diagnostics and modeling of combustion in internal combustion engines—COMODIA98. JSME, Kyoto, pp 239–44

    Google Scholar 

  • Lipatnikov AN, Nishiki S, Hasegawa T (2015a) DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion. Combust Theory Model 19:309–328

    Google Scholar 

  • Lipatnikov AN, Chomiak J, Sabelnikov VA, Nishiki S, Hasegawa T (2015b) Unburned mixture fingers in premixed turbulent flames. Proc Combust Inst 35:1401–1408

    Google Scholar 

  • Lipatnikov AN, Sabelnikov VA, Nishiki S, Hasegawa T, Chakraborty N (2015c) DNS assessment of a simple model for evaluating velocity conditioned to unburned gas in premixed turbulent flames. Flow Turbul Combust 94:513–526

    Google Scholar 

  • Lipatnikov AN, Sabelnikov VA, Nishiki S, Hasegawa T (2017) Flamelet perturbations and flame surface density transport in weakly turbulent premixed combustion. Combust Theory Model 21:205–227

    Article  MathSciNet  Google Scholar 

  • Majda A, Sethian J (1985) The derivation and numerical solution of the equations for zero Mach number combustion. Combust Sci Technol 42:185–205

    Article  Google Scholar 

  • Meneveau C, Poinsot T (1991) Stretching and quenching of flamelets in premixed turbulent combustion. Combust Flame 86:311–332

    Article  Google Scholar 

  • Moreau P (1977) Turbulent flame development in a high velocity premixed flow. AIAA paper 77/49

    Google Scholar 

  • Moreau V (2009) A self-similar premixed turbulent flame model. Appl Math Model 33:835–851

    Article  MATH  Google Scholar 

  • Moss JB (1980) Simultaneous measurements of concentration and velocity in an open premixed turbulent flame. Combust Sci Technol 22:119–129

    Article  Google Scholar 

  • Mouqallid M, Lecordier B, Trinité M (1994) High speed laser tomography analysis of flame propagation in a simulated internal combustion engine—applications to nonuniform mixture. SAE paper 941990

    Google Scholar 

  • Muppala SRP, Dinkelacker F (2004) Numerical modelling of the pressure dependent reaction source term for turbulent premixed methane-air flames. Prog Comp Fluid Dyn 4:328–336

    Article  Google Scholar 

  • Namazian M, Shepherd IG, Talbot L (1986) Characterization of the density fluctuations in turbulent V-shaped premixed flames. Combust Flame 64:299–308

    Article  Google Scholar 

  • van Oijen JA, Donini A, Bastiaans RJM, ten Thije Boonkkamp JHM, de Goey LPH (2016) State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog Energy Combust Sci 57:30–74

    Article  Google Scholar 

  • Peters N (2000) Turbulent combustion. The University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pfadler S, Leipertz A, Dinkelacker F (2008) Systematic experiments on turbulent premixed Bunsen flames including turbulent flux measurements. Combust Flame 152:616–631

    Article  Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. Edwards, Philadelphia

    Google Scholar 

  • Poinsot T, Veynante D, Candel S (1991) Quenching processes and premixed turbulent combustion diagrams. J Fluid Mech 228:561–606

    Google Scholar 

  • Polifke W, Flohr P, Brandt M (2002) Modeling of inhomogeneously premixed combustion with an extended TFC model. ASME J Eng Gas Turbines Power 124:58–65

    Article  Google Scholar 

  • Poludnenko AY, Oran ES (2011) The interaction of high-speed turbulence with flames: turbulent flame speed. Combust Flame 158:301–326

    Article  Google Scholar 

  • Pope SB (1988) The evolution of surface in turbulence. Int J Eng Sci 26:445–469

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (2000) Turbulent flows. The University Press, Cambridge

    Book  MATH  Google Scholar 

  • Prudnikov AG (1960) Hydrodynamics equations in turbulent flames. In: Prudnikov AG (ed) Combustion in a turbulent flow. Oborongiz, Moscow (in Russian)

    Google Scholar 

  • Prudnikov AG (1964) Burning of homogeneous fuel-air mixtures in a turbulent flow. In: Raushenbakh BV (ed) Physical principles of the working process in combustion chambers of jet engines. Mashinostroenie, Moscow (in Russian; translated from Russian by the Translation Division, Foreign and Technology Division, Wright Patterson AFB, Clearing House for Federal Scientific & Technical Information, Ohio, 1967, pp 244–336)

    Google Scholar 

  • Renou B, Mura A, Samson E, Boukhalfa A (2002) Characterization of the local flame structure and flame surface density for freely-propagating premixed flames at various Lewis numbers. Combust Sci Technol 174:143–179

    Article  Google Scholar 

  • Roberts WL, Driscoll JF, Drake MC, Goss LP (1993) Images of the quenching of a flame by a vortex—to quantify regimes of turbulent combustion. Combust Flame 94:58–69

    Article  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN (2011) A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust Sci Technol 183:588–613

    Article  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN (2013) Transition from pulled to pushed premixed turbulent flames due to countergradient transport. Combust Theory Model 17:1154–1175

    Article  MathSciNet  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN (2015) Transition from pulled to pushed fronts in premixed turbulent combustion: theoretical and numerical study. Combust Flame 162:2893–2903

    Article  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN (2017) Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu Rev Fluid Mech 49:91–117

    Article  MathSciNet  MATH  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN, Chakraborty N, Nishiki S, Hasegawa T (2016) A transport equation for reaction rate in turbulent flows. Phys Fluids 28:081701

    Article  Google Scholar 

  • Sabelnikov VA, Lipatnikov AN, Chakraborty N, Nishiki S, Hasegawa T (2017) A balance equation for the mean rate of product creation in premixed turbulent flames. Proc Combust Inst 36:1893–1901

    Article  Google Scholar 

  • Sathiah P, Lipatnikov AN (2007) Effects of flame development on stationary premixed turbulent combustion. Proc Combust Inst 31:3115–3122

    Article  Google Scholar 

  • Schmidt HP, Habisreuther P, Leuckel W (1998) A model for calculating heat release in premixed turbulent flames. Combust Flame 113:79–91

    Article  Google Scholar 

  • Scurlock AC, Grover JH (1953) Propagation of turbulent flames. Proc Combust Inst 4:645–658

    Article  Google Scholar 

  • Shelkin KI (1943) On combustion in a turbulent flow. J Tech Phys 13:520–530. Transl NACA, 1967, in NACA TM 1110:1–18 (from Russian)

    Google Scholar 

  • Siewert P (2006) Flame front characteristics of turbulent lean premixed methane/air flames at high-pressure. PhD thesis, ETHZ Zürich

    Google Scholar 

  • Sjunnesson A, Henrikson, Löfström C (1992) CARS measurements and visualization of reacting flows in a bluff body stabilized flame. AIAA paper 92/3650

    Google Scholar 

  • Sponfeldner T, Soulopoulos N, Beyrau F, Hardalupas Y, Taylor AMKP, Vassilicos JC (2015) The structure of turbulent flames in fractal- and regular-grid-generated turbulence. Combust Flame 162:3379–3393

    Article  MATH  Google Scholar 

  • Stevens EJ, Bray KNC, Lecordier B (1998) Velocity and scalar statistics for premixed turbulent stagnation flames using PIV. Proc Combust Inst 27:949–955

    Article  Google Scholar 

  • Swaminathan N, Bray KNC (2005) Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust Flame 143:549–565

    Article  Google Scholar 

  • Taylor GI (1935) Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc R Soc Lond A 151:465–478

    Article  Google Scholar 

  • Tamadonfar P, Gülder ÖL (2014) Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames. Combust Flame 161:3154–3165

    Article  Google Scholar 

  • Tamadonfar P, Gülder ÖL (2015) Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combust Flame 162:4417–4441

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Trouvé A, Poinsot T (1994) Evolution equation for flame surface density in turbulent premixed combustion. J Fluid Mech 278:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Venkateswaran P, Marshall A, Shin DH, Noble D, Seitzman J, Lieuwen T (2011) Measurements and analysis of turbulent consumption speeds of H\(_2\)/CO mixtures. Combust Flame 158:1602–1614

    Article  Google Scholar 

  • Venkateswaran P, Marshall A, Seitzman J, Lieuwen T (2013) Pressure and fuel effects on turbulent consumption speeds of H\(_2\)/CO blends. Proc Combust Inst 34:1527–1535

    Article  Google Scholar 

  • Venkateswaran P, Marshall A, Seitzman J, Lieuwen T (2015) Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts. Combust Flame 162:375–387

    Article  Google Scholar 

  • Verma S, Lipatnikov AN (2016) Does sensitivity of measured scaling exponents for turbulent burning velocity to flame configuration prove lack of generality of notion of turbulent burning velocity? Combust Flame 173:77–88

    Article  Google Scholar 

  • Vervisch L, Bidaux E, Bray KNC, Kollmann W (1995) Surface densiuty function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys Fluids 7:2496–2503

    Article  MATH  Google Scholar 

  • Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci 28:193–266

    Article  Google Scholar 

  • Wallesten J, Lipatnikov AN, Chomiak J (2002) Modeling of stratified combustion in a DI SI engine using detailed chemistry pre-processing. Proc Combust Inst 29:703–709

    Article  Google Scholar 

  • Wang Z, Magi V, Abraham J (2017) Turbulent flame speed dependencies of lean methane-air mixtures under engine relevant conditions. Combust Flame 180:53–62

    Article  Google Scholar 

  • Williams FA (1985) Combustion theory, 2nd edn. Benjamin/Cummings, Menlo Park, California

    Google Scholar 

  • Wu MS, Kwon A, Driscoll G, Faeth GM (1990) Turbulent premixed hydrogen/air flames at high Reynolds numbers. Combust Sci Technol 73:327–350

    Article  Google Scholar 

  • Yanagi T, Mimura Y (1981) Velocity-temperature correlation in premixed flame. Proc Combust Inst 18:1031–1039

    Article  Google Scholar 

  • Yasari E, Lipatnikov AN (2015) Assessment of a recent model of turbulent scalar flux in RANS simulations of premixed Bunsen flames. In: Hanjalic K, Miyauchi T, Borello D, Had\(\breve{\rm z}\)iabdi\(\acute{\rm c}\) M, Venturini P (eds) THMT15, Proceedings of the International Symposium Turbulence, Heat and Mass Transfer 8, Sarajevo, Bosnia and Herzegovina, September 15–18, 2015. ICHMT

    Google Scholar 

  • Yasari E, Verma S, Lipatnikov AN (2015) RANS simulations of statistically stationary premixed turbulent combustion using flame speed closure model. Flow Turbul Combust 94:381–414

    Article  Google Scholar 

  • Yu R, Lipatnikov AN (2017a) A direct numerical simulation study of statistically stationary propagation of reaction wave in homogeneous turbulence. Phys Rev E 95:063101

    Google Scholar 

  • Yu R, Lipatnikov AN (2017b) DNS study of dependence of bulk consumption velocity in a constant-density reacting flow on turbulence and mixture characteristics. Phys Fluids 29:065116

    Google Scholar 

  • Yu R, Lipatnikov AN, Bay XS (2014) Three-dimensional direct numerical simulation study of conditioned moments associated with front propagation in turbulent flows. Phys Fluids 26:085104

    Article  Google Scholar 

  • Yu R, Bay XS, Lipatnikov AN (2015) A direct numerical simulation study of interface propagation in homogeneous turbulence. J Fluid Mech 772:127–164

    Article  Google Scholar 

  • Zel’dovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) The mathematical theory of combustion and explosions. Consultants Bureau, New York

    Book  Google Scholar 

  • Zimont VL (1979) Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds number. Combust Explos Shock Waves 15:305–311

    Article  Google Scholar 

  • Zimont VL (2000) Gas premixed combustion at high turbulence. Turbulent flame closure combustion model. Exp Thermal Fluid Sci 21:179–186

    Article  Google Scholar 

  • Zimont VL (2015) Unclosed Favre-averaged equation for the chemical source and an analytical formulation of the problem of turbulent premixed combustion in the flamelet regime. Combust Flame 162:874–875

    Article  Google Scholar 

  • Zimont VL, Lipatnikov AN (1993) Calculation of the rate of heat release in a turbulent flame. Doklady Phys Chem 332:440–443

    Google Scholar 

  • Zimont VL, Lipatnikov AN (1995) A numerical model of premixed turbulent combustion. Chem Phys Rep 14:993–1025

    Google Scholar 

  • Zimont VL, Biagioli F, Syed K (2001) Modelling turbulent premixed combustion in the intermediate steady propagation regime. Prog Comput Fluid Dyn 1:14–28

    Article  Google Scholar 

  • Zimont VL, Polifke W, Bettelini M, Weisenstein W (1998) An efficient computational model for premixed turbulent combustion at high Reynolds number based on a turbulent flame speed closure. J Eng Gas Turbines Power 120:526–532

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Swedish Research Council (VR), Swedish Energy Agency (EM), Swedish Gas Turbine Center (GTC), Chalmers Areas of Advance Transport and Energy, and Combustion Engine Research Center (CERC). The author is grateful to Profs. Chomiak, Karpov, Sabelnikov, and Zimont for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei N. Lipatnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lipatnikov, A.N. (2018). RANS Simulations of Premixed Turbulent Flames. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics