Skip to main content

Removal of Inorganic and Organic Contaminants from Terrestrial and Aquatic Ecosystems Through Phytoremediation and Biosorption

  • Chapter
  • First Online:
Environmental Biotechnology: For Sustainable Future

Abstract

Escalated industrialization, inappropriate waste management practices, mining, landfill operations, and application of sewage sludge have caused excess contamination of aquatic and terrestrial ecosystems. As a consequence, human beings pose serious threats to life-supporting resources, i.e., air, soil, and water. Heavy metals and pesticides are a special class of contaminants having wide variety of effects. When the contaminated lands are used for agriculture practices, contaminants like heavy metals and pesticides get transferred from soil to food chain which leads to bioaccumulation and biomagnification. Phytoremediation (a technique that exploits plants ability to lessen, eradicate, degrade, or immobilize the environmental contaminants, with the aim of restoring the contaminated area) is gaining advantage over other conventional treatment techniques being economical, environmentally sound, and aesthetically acceptable. Conventional approaches for cleanup and restoration of heavy metals and pesticides from contaminated environment have some unavoidable precincts like high cost and creation of secondary pollutants. Many aquatic and terrestrial plants such as Eichhornia, Pistia, Lemna, Salvinia, Typha, Hydrilla, Ricinus, Brassica, Arabidopsis, Vetiver, Solanum, etc. are capable of accumulating heavy metals and can be used as agents for eco-restoration of degraded ecosystems. Further, biosorption has also emerged as an innovative, eco-friendly, cost-effective, and probable substitute for the removal and/or recovery of inorganic contaminants from aqueous medium. Biosorption can be applicable over wide range of temperature and pH, with rapid kinetics of adsorption and desorption and low capital and operation cost. Even, biological biomass can again be regenerated for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas, S. N. A., Ismail, M. H. S., Kamal, L., & Izhar, S. (2013). Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28, 1518–1530.

    CAS  Google Scholar 

  • Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3(4), 74–102.

    Google Scholar 

  • Abdel Salam, O. E., Reiad, N. A., & ElShafei, M. M. (2011). A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. Journal of Advanced Research, 2(4), 297–303.

    Article  Google Scholar 

  • Adhikari, T., Kumar, R., Singh, M. V., & Rao, A. S. (2010). Phytoaccumulation of lead by selected wetland plant species. Communications in Soil Science and Plant Analysis, 41, 2623–2632.

    Article  CAS  Google Scholar 

  • Afrous, A., Manshouri, M., Liaghat, A., Pazira, E., & Sedghi, H. (2011). Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. African Journal of Agricultural Research, 6(24), 5391–5397.

    Google Scholar 

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71–78.

    CAS  Google Scholar 

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2004). Biosorption of heavy metals. Journal of Chemistry and Environment, 7(4), 71–79.

    Google Scholar 

  • Ahemad, M., & Malik, A. (2011). Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriology Journal, 2, 12–21.

    Article  Google Scholar 

  • Ahmad, A., & Al-Othman, A. A. S. (2014). Remediation rates and translocation of heavymetals from contaminated soil through Parthenium hysterophorus. Chemistry and Ecology, 30(4), 317–327.

    Article  CAS  Google Scholar 

  • Ahmad, M. F., Haydar, S., Bhatti, A. A., & Baria, A. J. (2014). Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochemical Engineering Journal, 84, 83–90.

    Article  CAS  Google Scholar 

  • Ahmady-Asbchin, S., Andre’s, Y., Ge’rente, C., & Cloirec, P. L. (2008). Biosorption of Cu(II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresource Technology, 99, 6150–6155.

    Article  CAS  Google Scholar 

  • Aktar, M. W., Paramasivam, M., Ganguly, M., Purkait, S., & Sengupta, D. (2010). Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: A study for toxicity and ecological impact. Environmental Monitoring and Assessment, 160, 207–213.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Abu Foul, A. (2013). Application of response surface methodology (rsm) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. Journal of Chemical Technology and Biotechnology, 88(12), 141–151.

    Google Scholar 

  • Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces, B: Biointerfaces, 63, 116–121.

    Article  CAS  Google Scholar 

  • Araujo, A. L. P., Bertagnolli, C., Silva, M. G. C., Gmenes, M. L., & Barros, M. A. S. D. (2013). Zinc adsorption in bentonite clay: Influence of pH and initial concentration. Acta Scientiarum – Technology, 35, 325–332.

    Google Scholar 

  • Arora, A., Sood, A., & Singh, P. K. (2004). Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology, 3, 302–304.

    Google Scholar 

  • Arora, A., Saxena, S., & Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology and Biotechnology, 22, 97–100.

    Article  CAS  Google Scholar 

  • Ashraf, M. A., Maah, M. J., & Yusof, I. (2011). Heavy metals accumulation in plants growing in tin mining catchment. International Journal of Environmental Science and Technology, 8(2), 401–416.

    Article  CAS  Google Scholar 

  • Ashworth, J., Barnes, C., Oates, P., & Schaw, A. (2005). Indicators for land contaminants science. Environment agency report SC030039/SR. Bristol Environment Agency.

    Google Scholar 

  • Babak, L., Šupinova, P., Zichova, M., Burdychova, R., & Vitova, E. (2012). Biosorption of Cu, Zn and Pb by thermophilic bacteria–effect of biomass concentration on biosorption capacity. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis LX (5).

    Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.

    CAS  Google Scholar 

  • Banerjee, K., Ramesh, S. T., Nidheesh, P. V., & Bharathi, K. S. (2012). A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iranica Journal of Energy & Environment, 3, 143–156.

    Google Scholar 

  • Banuelos, G., Terry, N., Leduc, D. L., Pilon-Smits, E. A. H., & Mackey, B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environmental Science & Technology, 39, 1771–1777.

    Article  CAS  Google Scholar 

  • Bauddh, K., & Singh, R. P. (2012). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental Safety, 85, 13–22.

    Article  CAS  Google Scholar 

  • Bennicelli, R., Stezpniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 141–146.

    Article  CAS  Google Scholar 

  • Benyoucef, S., & Amrani, M. (2011). Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination, 275, 231–236.

    Article  CAS  Google Scholar 

  • Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: A review. Environmental Progress & Sustainable Energy, 33, 9–27.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, J. S., & Cooper, C. M. (2006). Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere, 65, 1049–1057.

    Article  CAS  Google Scholar 

  • Boule, K. M., Vicente, J. A. F., Nabais, C., Prasad, M. N. V., & Freitas, H. (2009). Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology, 91, 1–9.

    Article  CAS  Google Scholar 

  • Boyd, C. E. (1970). Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany, 24, 95–103.

    Article  Google Scholar 

  • Brooks, R. R. (1998). Phytochemistry of hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 15–54). Wallingford: CAB International.

    Google Scholar 

  • Carvalho, W. S., Martins, D. F., Gomes, F. R., Leite, I. R., Gustavo da Silva, L., Ruggiero, R., & Richter, E. M. (2011). Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass and Bioenergy, 35, 3913–3919.

    Article  CAS  Google Scholar 

  • Chandra, R., & Yadav, S. (2010). Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecological Engineering, 36, 1277–1284.

    Article  Google Scholar 

  • Chandra, R., & Yadav, S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites communis, Typha angustifolia and Cyperus esculentus. International Journal of Phytoremediation, 13, 580–591.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Kumar, A., Basu, S., & Dutta, S. (2012). Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent. Chemical Engineering Journal, 181–182, 289–299.

    Article  CAS  Google Scholar 

  • Chaudhry, Q., Schroder, P., Werck-Reichhart, D., Grajek, W., & Marecik, R. (2002). Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research, 9, 4–17.

    Article  CAS  Google Scholar 

  • Chen, J. C., Wang, K. S., Chen, H., Lu, C. Y., Huang, L. C., Li, H. C., Peng, T. H., & Chang, S. H. (2009). Phytoremediation of Cr(III) by Ipomoea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresource Technology, 101, 3033–3039.

    Article  CAS  Google Scholar 

  • Chen, J.-C., Wang, K.-S., Chen, H., Lu, C.-Y., Huang, L.-C., Li, L.-C., Peng, T.-H., & Chang, C.-H. (2010). Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresource Technology, 101(9), 3033–3039.

    Article  CAS  Google Scholar 

  • Cho, D., Chon, C., Kim, Y., Jeon, B., Schwartz, F. W., Lee, E., & Song, H. (2011). Adsorption of nitrate and Cr (VI) by cationic polymer-modified granular activated carbon. Chemical Engineering Journal, 175, 298–305.

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    Article  CAS  Google Scholar 

  • Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123(3), 825–832.

    Article  CAS  Google Scholar 

  • Cowgill, V. M. (1974). The hydro geochemical of Linsley Pond, North Braford. Part 2. The chemical composition of the aquatic macrophytes. Archiv für Hydrobiologie, Supplement, 45, 1–119.

    CAS  Google Scholar 

  • Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275, 276–284.

    Article  CAS  Google Scholar 

  • Dalcorso, G., Farinati, S., Maistri, S., & Furini, A. (2008). How plants cope with cadmium: Staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 50(10), 1268–1280.

    Article  CAS  Google Scholar 

  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11, 664–691.

    Article  CAS  Google Scholar 

  • De Fillippis, L. F. (1979). The effect of sub-lethal concentrations of mercury and zinc in Chlorella: The counteraction of metal toxicity by selenium and sulphhydryl compounds. Zeitschrift für Pflanzenphysiologie, 93, 63–68.

    Article  Google Scholar 

  • Delgado, M., Bigeriego, M., & Guardiola, E. (1993). Uptake of Zn, Cr and Cd by water hyacinth. Water Research, 27, 269.

    Article  CAS  Google Scholar 

  • Denny, P. (1980). Solute movement in submerged angiosperms. Biological Reviews, 55, 65–92.

    Article  CAS  Google Scholar 

  • Denny, P. (1987). Mineral cycling by wetland plants a review. Archiv fur Hydrobiologie Beith, 27, 1–25.

    CAS  Google Scholar 

  • Dhir, B., Sharmila, P., & Saradhi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39, 754–781.

    Article  CAS  Google Scholar 

  • Dixit, A., Dixit, S., & Goswami, S. (2011). Process and plants for wastewater remediation: A review. Scientific Reviews and Chemical Communications, 1(1), 71–77.

    Google Scholar 

  • El-Mekkawi, D., & Galal, H. R. (2013). Removal of a synthetic dye “Direct Fast Blue B2RL” via adsorption and photocatalytic degradation using low cost rutile and Degussa P25 titanium dioxide. Journal of Hydro-Environment Research, 7, 219–226.

    Article  Google Scholar 

  • Euliss, K., Ho, C. H., Schwab, A. P., Rock, S., & Banks, M. K. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a Riparian zone. Bioresource Technology, 99, 1961–1971.

    Article  CAS  Google Scholar 

  • Feng, N., & Guo, X. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of the Nonferrous Metals Society of China, 22, 1224–1231.

    Article  CAS  Google Scholar 

  • Fernandez, R. T., Whitwell, T., Riley, M. B., & Bernard, C. R. (1999). Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. Journal of the American Society for Horticultural Science, 124, 539.

    CAS  Google Scholar 

  • Flores-Garnica, J. G., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2013). Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. Bioresource Technology, 136, 635–643.

    Article  CAS  Google Scholar 

  • Fritioff, A., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.

    Article  CAS  Google Scholar 

  • Gao, J., Garrison, A. W., Mazur, C. S., Wolfe, N. L., & Hoehamer, C. F. (2000). Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48(12), 6121–6127.

    Article  CAS  Google Scholar 

  • Ghavri, S. V., Bauddh, K., Kumar, S., & Singh, R. P. (2013). Bioaccumulation and translocation potential of Na+ and K+ in native weeds grown on industrially contaminated soil. International Journal of ChemTech Research, 5(4), 1869–1875.

    CAS  Google Scholar 

  • Goncalves, C., & Alpendurada, M. F. (2005). Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry. Talanta, 65, 1179–1189.

    Article  CAS  Google Scholar 

  • Guo, J., Xu, W., & Ma, M. (2012). The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 199–200, 309–313.

    Article  CAS  Google Scholar 

  • Guo, W., Zhang, H., & Huo, S. (2014). Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecological Engineering, 67, 150–155.

    Article  Google Scholar 

  • Ha, H., Olson, J., Bian, L., & Rogerson, P. A. (2014). Analysis of heavy metals sources in soil using kriging interpolation on principal components. Environmental Science and Technology, 48, 4999–5007.

    Article  CAS  Google Scholar 

  • Haddad, M. E., Mamouni, R., Saffaj, N., & Lazar, S. (2014). Evaluation of performance of animal bone meal as a new low cost adsorbent for the removal of a cationic dye Rhodamine B from aqueous solutions. Journal of Saudi Chemical Society. in Press.

    Google Scholar 

  • Hashemian, S., & Salimi, M. (2012). Nano composite a potential low cost adsorbent for removal of cyanine acid. Chemical Engineering Journal, 188, 57–63.

    Article  CAS  Google Scholar 

  • Hemen, S. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.

    Article  CAS  Google Scholar 

  • Hossain, M. A., & Fujita, M. (2009). Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Bioscience Biotechnology and Biochemistry, 73(9), 2007–2013.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Hossain, M. Z., & Fujita, M. (2009). Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian Journal of Crop Science, 3(2), 53–64.

    CAS  Google Scholar 

  • Hossain, M. A., Piyatida, P., Teixeira da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37. https://doi.org/10.1155/2012/872875.

    Article  CAS  Google Scholar 

  • Hu, M. J., Wei, Y. L., Yang, Y. W., & Lee, J. F. (2003). Immobilization of chromium (VI) with debris of aquatic plants. Environmental Contamination and Toxicology, 71, 0840–0847.

    Article  CAS  Google Scholar 

  • Hu, C., Zhang, L., Hamilton, D., Zhou, W., Yang, T., & Zhu, D. (2007). Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia, 579(1), 211–218.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1975). A treatise on limnology. London: Wiley.

    Google Scholar 

  • Jadia, C. D., & Fulekar, M. H. (2009). Review on phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921.

    CAS  Google Scholar 

  • Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (E. crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 14, 2.

    Google Scholar 

  • Jaison, S., & Muthukmar, T. (2016). Chromium accumulation in medicinal plants growing naturally on tannery contaminated and non-contaminated soils. Biological Trace Element Research. https://doi.org/10.1007/s12011-016-0740-1.

    Article  CAS  Google Scholar 

  • Jiménez-Cedillo, M. J., Olguín, M. T., Fall, C., & Colin-Cruz, A. (2013). As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). Journal of Environmental Management, 117, 242–252.

    Article  CAS  Google Scholar 

  • Kamal, M., Ghaly, A. E., Mahmoud, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Kamel, A. K. (2013). Phytoremediation potentiality of aquatic macrophytes in heavy metal contaminated water of El-Temsah Lake, Ismailia, Egypt. Middle-East Journal of Scientific Research, 14(12), 1555–1568.

    Google Scholar 

  • Karakagh, R. M., Chorom, M., Motamedi, H., YuseKalkhajeh, Y. K., & Oustan, S. (2012). Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrology and Hydrobiology, 12(3), 191–198.

    Article  CAS  Google Scholar 

  • Kasim, W. A. (2005). The correlation between physiological and structural alterations induced by copper and cadmium stress in broad beans (Vicia faba L.). Egyptian Journal of Biology, 7, 20–32.

    Google Scholar 

  • Kelly, M. G., & Whitton, B. A. (1989). Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia, 175(1), 12.

    Article  Google Scholar 

  • Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E. R., & Sanchez-Salas, J. L. (2012). Biosorption of heavy metals in polluted water, using different waste fruit cortex. Physics and Chemistry of the Earth, 37–39, 26–29.

    Article  Google Scholar 

  • Kılıc, M., Kırbıyık, Ç., Çepelio˘gullar, Ö., & Pütüna, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, aby-product of pyrolysis. Applied Surface Science, 283, 856–862.

    Article  CAS  Google Scholar 

  • Kiyono, M., Oka, Y., Sone, Y., Tanaka, M., Nakamura, R., Sato, M. H., Pan-Hou, H., Sakabe, K., & Inoue, K. (2012). Expression of bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121 in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta, 235, 841–850.

    Article  CAS  Google Scholar 

  • Kumar, D., & Kumar, N. (2016). Tannery effluent toxicity assessment on the growth and germination of phaseolus vulgaris L (Bean). International Journal of Green and Herbal Chemistry, 5(2), 139–144.

    CAS  Google Scholar 

  • Kumar, I. N., & Oommen, C. (2012). Removal of heavy metals by biosorption using freshwater algae Spirogyra hyaline. Journal of Environmental Biology, 33, 27–31.

    CAS  Google Scholar 

  • Kumar, J., Balomajumder, C., & Mondal, P. (2011). Application of agro-based biomasses for Zinc removal from wastewater–a review. Clean: Soil, Air, Water, 39, 641–652.

    CAS  Google Scholar 

  • Kumar, N., Bauddh, K., Barman, S. C., & Singh, D. P. (2012). Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. Journal of Environmental Biology, 33, 323–327.

    Google Scholar 

  • Kumar, N., Bauddh, K., Kumar, S., Dwivedi, N., Singh, D. P., & Barman, S. C. (2013). Extractability and phytotoxicity of heavy metals present in petrochemical industry sludge. Clean Technologies and Environmental Policy, 15, 1033–1039.

    Article  CAS  Google Scholar 

  • Kumar, D., Singh, D. P., Barman, S. C., & Kumar, N. (2016). Heavy metal and their regulation in plant system: An overview. In Plant responses to xenobiotics (pp. 19–38). New York: Springer.

    Chapter  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Leblebici, Z., & Aksoy, A. (2011). Growth and lead accumulation capacity of L. minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment. Water, Air, and Soil Pollution, 214, 175–184.

    Article  CAS  Google Scholar 

  • Li, Q., Chen, B., lin, P., Zhou, J., Zhan, J., Shen, Q., & Pan, X. (2016). Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root E. crassipes. International Journal of Phytoremediation, 18, 103–109.

    Article  CAS  Google Scholar 

  • Liu, D., Zou, J., Wang, M., & Jiang, W. (2008). Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology, 99(7), 2628–2636.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Tai, C. H. (1994). Biosorption of copper by water hyacinth roots. Journal of Environmental Science and Health, Part A, 29(1), 171.

    Google Scholar 

  • Mahmood, Q., Zheng, P., Islam, E., Hayet, Y., Hassan, M. J., Jilani, G., & Jin, R. C. (2005). Lab scale studies on water Hyacinth (E. crassipes Marte Sloms) for biotreatment of textile waste water. Caspian Journal of Environmental Sciences, 3, 83–88.

    Google Scholar 

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad. Pakistan Journal of Botany, 42(1), 291–301.

    CAS  Google Scholar 

  • Mallick, N., Singh, A. K., & Rai, L. C. (1990). Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonium, 14CO2 fixations, nitrate reductase and urease activity of Chlorella vulgaris. Biology of Metals, 2, 223–228.

    Article  CAS  Google Scholar 

  • Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pre-treatment effect on Rosa bourboniaphyto biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresource Technology, 132, 446–452.

    Article  CAS  Google Scholar 

  • Mapanda, F., Mangwayana, E. N., Nyanangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on the heavymetal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems & Environment, 107, 151–165.

    Article  CAS  Google Scholar 

  • Marin-Rangel, V. M., Cortes-Martines, R., Villanueva, R. A. C., Garnica-Romo, M. G., & Martinez-Flores, H. E. (2012). As(V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia Swingle) residues. Journal of Food Science, 71, 10–14.

    Article  CAS  Google Scholar 

  • Mazumdar, K., & Das, S. (2015). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environmental Science and Pollution Research, 22, 701–710.

    Article  CAS  Google Scholar 

  • Mejare, M., & Bulow, L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 19, 67–73.

    Article  CAS  Google Scholar 

  • Miglioranza, K. S. B., De Moreno, J. E. A., & Moreno, V. J. (2004). Organochlorine pesticides sequestered in the aquatic hydrophyte Schoenoplectus californicus (C. A. Meyer) Soják from a shallow lake in Argentina. Water Research, 38, 1765–1772.

    Article  CAS  Google Scholar 

  • Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57, 997–1005.

    Article  CAS  Google Scholar 

  • Mkandawire, M., Taubert, B., & Dude, E. G. (2004). Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation, 6(4), 347–362.

    Article  CAS  Google Scholar 

  • Mohamad, H. H., & Latif, P. A. (2010). Uptake of Cadmium and Zinc from synthetic effluent by water hyacinth (E. crassipes). Environment Asia, 3, 36–42.

    Google Scholar 

  • Molisani, M. M., Rocha, R., Machado, W., Barreto, R. C., & Lacerda, L. D. (2006). Mercury contents in aquatic macrophytes from two reservoirs in the paraiba do sul: Guandu river system, Se Brazil. Brazilian Journal of Biology, 66, 101–107.

    Article  CAS  Google Scholar 

  • Mukherjee, S., Bhattacharya, P., & Duttagupta, A. K. (2004). Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed L. minor: Field and laboratory studies. Environment International, 30, 811–814.

    Article  CAS  Google Scholar 

  • Naeem, K., Yawar, W., Akhter, P., & Rehana, I. (2010). Atomic absorption spectrometric determination of cadmium and lead in soil after total digestion. Asia-Pacific Journal of Chemical Engineering, 7, 295–301. https://doi.org/10.1002/apj.535.

    Article  CAS  Google Scholar 

  • Nedunuri, K. V., Lowell, C., Meade, W., Vonderheide, A. P., & Shann, J. R. (2009). Management practices and phytoremediation by native grasses. International Journal of Phytoremediation, 12(2), 200–214.

    Article  CAS  Google Scholar 

  • Nguyen, T. T. T., Davy, F. B., Rimmer, M., & De Silva, S. (2009). Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/ NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, Chonburi, Thailand.

    Article  Google Scholar 

  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., & Nguyen, T. V. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater: Review. Bioresource Technology, 148, 574–585.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., Naidoo, E. B., & Modise, S. J. (2010). Biosorption of Cu(II) and Pb(II) onto potassium hydroxide treated pine cone powder. Journal of Environmental Management, 91, 1674–1685.

    Article  CAS  Google Scholar 

  • Olette, R., Couderchet, M., Biagianti, S., & Eullaffroy, P. (2008). Toxicity and removal of pesticides by selected aquatic plants. Chemosphere, 70, 1414–1421.

    Article  CAS  Google Scholar 

  • Olette, R., Couderchet, M., & Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72, 2096–2101.

    Article  CAS  Google Scholar 

  • Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. In Reviews of environmental contamination and toxicology (pp. 1–63). New York: Springer.

    Google Scholar 

  • Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. M., & Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.

    Article  CAS  Google Scholar 

  • Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science & Research, 2, 135.

    Google Scholar 

  • Pierre, V., Terry, M., & Madeleine, S. G. (2011). Compartmentation of metals in foliage of Populus tremula grown on soil with mixed contamination from the tree crown to leaf cell level. Environmental Pollution, 159, 324–336.

    Article  CAS  Google Scholar 

  • Prakash, B. S., & Kumar, S. V. (2013). Batch removal of heavy metals by biosorption onto marine algae-equilibrium and kinetic studies. International Journal of ChemTech Research, 5(3), 1254–1262.

    Google Scholar 

  • Prasertsup, P., & Ariyakanon, N. (2011). Removal of Chlorpyrifos by Water Lettuce (P. stratiotes L.) and Duckweed (L. minor L.). International Journal of Phytoremediation, 13(4), 383–395.

    Article  Google Scholar 

  • Priya, E. S., & Selvan, P. S. (2013). Water hyacinth (E. crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.03.002 .

    Article  CAS  Google Scholar 

  • Qadir, S., Qureshi, M. I., Javed, S., & Abdin, M. Z. (2004). Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science, 167, 1171–1181.

    Article  CAS  Google Scholar 

  • Rahman, S. M. B., Kumar, S., Sayeed, M. A. B., Sabbir, M. W., Hasanuzzaman, A. F. M., Alam, M. I., & Sarower, M. G. (2008). Ecological diversity and distribution of aquatic and semi-aquatic weeds in Khulna district, Bangladesh. South Asian Journal of Agriculture, 3(1&2), 163–168.

    Google Scholar 

  • Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10, 430–439.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Environmental Science & Technology, 39, 697–753.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2010). Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation, 12, 96–104.

    Article  CAS  Google Scholar 

  • Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy metal pollution. Biological Reviews of the Cambridge Philosophical Society, 56, 99–151.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Waste water treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 5, 5–12.

    Article  Google Scholar 

  • Rajoriya, S., & Kaur, B. (2014). Adsorptive removal of Zinc from waste water by natural biosorbents. International Journal of Engineering and Science Invention, 3(6), 60–80.

    Google Scholar 

  • Reed, R. H., & Gadd, G. M. (1990). Metal tolerance in eukaryotic and prokaryotic algae. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 105–118). Boca Raton: CRC Press.

    Google Scholar 

  • Ren, Z., Xu, X., Gao, B., Yue, Q., & Song, W. (2015). Integration of adsorption and direct bio-reduction of perchlorate on surface of cotton stalk based resin. Journal of Colloid and Interface Science, 459, 127–135.

    Article  CAS  Google Scholar 

  • Rezania, S., Ponraj, M., Din, M. F. M., Chelliapan, S., & Sairan, F. M. (2016). Effectiveness of E. crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalination and Water Treatment, 57, 360–365.

    CAS  Google Scholar 

  • Rizwana, M., Darshan, M., & Nilesh, D. (2014). Phytoremediation of textile waste water using potential wetland plant: Eco sustainable approach. International Journal of Interdisciplinary and Multidisciplinary Studies, 1(4), 130–138.

    Google Scholar 

  • Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G., & Torres, C. (2011). Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnology, 11, 82–89.

    Article  CAS  Google Scholar 

  • Sakakibara, M., Ohmoril, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN – Soil, Air, Water, 39(8), 735–741.

    Article  CAS  Google Scholar 

  • Sanghamitra, K., Prasada, R. P. V. V., & Naidu, G. R. K. (2011). Heavy metal tolerance of weed species and their accumulations by phytoextraction. Indian Journal of Science and Technology, 4(3), 285–290.

    Google Scholar 

  • Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.

    Article  Google Scholar 

  • Sasmaz, M., Topal, E. I. A., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and L. minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246–253.

    Article  CAS  Google Scholar 

  • Sasmaza, A., Obekb, E., & Hasarb, H. (2009). The accumulation of heavy metals in Typha latifolia L. Grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.

    Article  Google Scholar 

  • Sharma, H. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43–50.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Gaur, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy metals. Ecological Engineering, 4, 37–43.

    Article  Google Scholar 

  • Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.

    Article  CAS  Google Scholar 

  • Silveira, M. L., Vendramini, J. M. B., Sui, X. L., Sollenberger, L., & O’Connor, G. A. (2013). Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Research, 6, 469–475.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31, 421–430.

    CAS  Google Scholar 

  • Song, W., Xu, X., Tan, X., Wang, Y., Ling, J., Gao, B., & Yue, Q. (2015). Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties. Carbohydrate Polymers, 115, 432–438.

    Article  CAS  Google Scholar 

  • Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, S. A. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41, 122–137.

    Article  CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Dwivedi, S., & Tripathi, R. (2010). Role of thio-metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water, Air, and Soil Pollution, 212, 155–165.

    Article  CAS  Google Scholar 

  • Srivastava, S., Srivastava, M., Suprasanna, S., & D’Souza, F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.

    Article  Google Scholar 

  • Suksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. Journal of Environmental Management, 102, 1–8.

    Article  CAS  Google Scholar 

  • Susselan, K. N., Salskar, D. A., Suvarna, S., Udas, A., & Bhagawat, A. (2006). Uptake of mercury, cadmium, uranium and zinc by Mimosa pudica. Indian Journal of Plant Physiology, 11, 432–436.

    Google Scholar 

  • Thayaparan, M., Iqbal, S. S., Chathuranga, P. K. D., & Iqbal, M. C. M. (2013). Rhizofiltration of Pb by Azolla pinnata. International Journal of Environmental Sciences, 3, 6.

    Google Scholar 

  • Tomar, V., Prasad, S., & Kumar, D. (2014). Adsorptive removal of fluoride from water samples using Zr–Mn composite material. Microchemical Journal, 111, 116–124.

    Article  CAS  Google Scholar 

  • Trevors, J. T., Stratton, G. W., & Gadd, G. M. (1986). Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Journal of Microbiology, 32, 447–464.

    CAS  Google Scholar 

  • Tuzen, M., & Sarı, A. (2010). Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chemical Engineering Journal, 158, 200–206.

    Article  CAS  Google Scholar 

  • Uçar, S., Erdem, M., Tay, T., & Karagöz, S. (2014). Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technologies and Environmental Policy, 17, 747–756.

    Article  CAS  Google Scholar 

  • Unnikannan, P., Baskaran, L., Chidambaram, A. L. A., & Sundaramoorthy, P. (2013). Chromium phytotoxicity in tree species and its role on phytoremediation. Insight Botany, 3, 15–25.

    Article  Google Scholar 

  • Upadhyay, A. R., Mishra, V. K., Pandey, S. K., & Tripathi, B. D. (2007). Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering, 30, 9–15.

    Article  Google Scholar 

  • Valipour, A., & Ahn, Y. H. (2016). Constructed wetlands as sustainable ecotechnologies in decentralization practices: A review. Environmental Science and Pollution Research, 23, 180–197.

    Article  CAS  Google Scholar 

  • Varun, M., D’Souza, P. J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: Prospects of phytoremediation. Environmental Science and Pollution Research, 19, 269–281.

    Article  CAS  Google Scholar 

  • Vázquez, G., Mosquera, O., Freire, M. S., Antorrena, G., & González-álvarez, J. (2012). Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 184, 147–155.

    Article  CAS  Google Scholar 

  • Verma, V. K., Gupta, R. K., & Rai, J. P. N. (2005). Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth. Journal of Scientific and Industrial Research, 64, 778–781.

    CAS  Google Scholar 

  • Vesely, T., Tlustos, P., & Szakova, J. (2011). The use of water lettuce (P. stratiotes) for rhizofiltration of a highly polluted solution by cadmium and lead. International Journal of Phytoremediation, 13, 859–872.

    Article  CAS  Google Scholar 

  • Wallen, D. G. (1990). The toxicity of chromium (VI) to photosynthesis of the phytoplankton assemblage of Lake Erie and the diatom Fragilaria crotonensis. Aquatic Botany, 38, 331–340.

    Article  CAS  Google Scholar 

  • Wasewar, K. L., Mohammad, A., Prasad, B., & Mishra, I. M. (2008). Adsorption of Zn using factory tea waste: Kinetics, equilibrium and thermodynamics. Clean: Soil, Air, Water, 36(3), 320–329.

    CAS  Google Scholar 

  • Whitton, B. A., Burrows, I. G., & Kelly, M. G. (1989). Use of Cladophora glomerata to monitor heavy metals in rivers. Journal of Applied Phycology, 1, 293–299.

    Article  Google Scholar 

  • Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265(1–3), 126–134.

    Article  CAS  Google Scholar 

  • Wolverton, B. C. A. (1975). Water hyacinth for removal of phenols from polluted waters, NASA Tech. Memo. (TM-X-72722), 18p. Science Technology Aerospace Report 13(7), 79.

    Google Scholar 

  • Wong, P. T. S., & Chau, Y. K. (1990). Zinc toxicity to fresh water algae. Toxicity Assess, 5, 167–177.

    Article  CAS  Google Scholar 

  • Xia, H., & Ma, X. (2006). Phytoremediation of ethion by water hyacinth (E. crassipes) from water. Bioresource Technology, 97, 1050–1054.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B., Tan, X., Zhang, X., Yue, D., & Yue, Q. (2013a). Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk. Carbohydrate Polymers, 98, 132–138.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B., Yue, Q., Li, Q., & Wang, Y. (2013b). Nitrate adsorption by multiple biomaterial based resins: Application of pilot-scale and lab-scale products. Chemical Engineering Journal, 234, 397–405.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B., Huang, X., Ling, J., Song, W., & Yue, Q. (2015). Physicochemical characteristics of epichlorohydrin, pyridine and trimethylamine functionalized cotton stalk and its adsorption/desorption properties for perchlorate. Journal of Colloid and Interface Science, 440, 219–228.

    Article  CAS  Google Scholar 

  • Yuan, Y., Yu, S., Banuelos, G. S., & He, Y. (2016). Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: Opportunities for contamination bioindication and phytoremediation. Environmental Science and Pollution Research, 23, 22477–22487.

    Article  CAS  Google Scholar 

  • Zhang, X., Lin, A. J., Zhao, F. J., Xu, G. Z., Duan, G. L., & Zhu, Y. G. (2008). Arsenic accumulation by aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 156, 1149–1155.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 182, 421–428.

    Article  CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Quian, J.-H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II Water hyacinth. Journal of environmental quality, 28, 339–344.

    Article  CAS  Google Scholar 

  • Zhu, Y.-G., Ralf, K., & Tong, Y.-P. (2004). Vacuolar compartmentalization: A second-generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9(1), 7–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Anand, S., Poonam, Tiwari, J., Kisku, G.C., Kumar, N. (2019). Removal of Inorganic and Organic Contaminants from Terrestrial and Aquatic Ecosystems Through Phytoremediation and Biosorption. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_3

Download citation

Publish with us

Policies and ethics