Skip to main content

Recent Biotechnological Approaches to Produce Climate-Ready Crops and Enhancing Crop Productivity

  • Chapter
  • First Online:
  • 803 Accesses

Abstract

Living beings are dependent on green energy for their survival and crops are playing most potential role in it. Sudden changes, i.e., biotic and abiotic stresses, are always a big factor affecting the productivity of crops, and in this adverse environmental conditions, it is very much imperative to find the alternate strategies for increasing crop productivity and to feed the increasing worldwide populations. We have always the knowledge of obtaining the best cultivar as earlier the farmers used to select the healthy seedlings for agriculture. Gregor Johann Mendel’s work Mendelian inheritance gives us a platform to use the conventional methods with scientific and validated models for better yields of crops. Therefore, initiatives need to be taken to tackle this problem. In recent years advanced biotechnological approaches, tools, and techniques have played important role. With the use of these advanced technologies researchers are able to do whole genome sequencing, annotation, prediction, and validation of gene expression, prediction of possible function as well as their involvement in various metabolic pathways, and identification of the presence of set of nucleic acid sequences (motif) in the promoter region as well as their protein-DNA interaction. Efforts has also been done to develop the genetically modified crop having important characters and to give good yield under adverse conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad K (2014) Molecular farming: strategies, expression systems and bio-safety considerations. Czech J Genet Plant Breed 50(1):1–10

    Google Scholar 

  • Andersen CB, Holst-Jensen A, Berdal KG, Thorstensen T, Tengs T (2006) Equal performance of TaqMan, MGB, molecular beacon, and SYBR green-based detection assays in detection and quantification of roundup ready soybean. J Agric Food Chem 54:9658–9663

    Article  CAS  PubMed  Google Scholar 

  • Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500

    Article  CAS  PubMed  Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35(1):1–35

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Micropropagation. In: Plant tissue culture: an introductory text. Springer, New Delhi, pp 245–274

    Chapter  Google Scholar 

  • Brownlee C (2005) Danna and Nathans: restriction enzymes and the boon to molecular biology. Proc Natl Acad Sci 102:5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke CM, Darling AE (2016) A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ 4:e2492

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zehnbauer B, Gnirke A et al (1997) Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc Natl Acad Sci 94:10756–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra VL, Sharma RP (1991) Plant biotechnology and agriculture. Curr Sci 60(9&10):543–547

    Google Scholar 

  • Dummit B, Chang YH (2006) Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands. Assay Drug Dev Technol 4:343–349

    Article  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop. Plant Biotechnol J 8:2–9

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Elsayed S, Plewes K, Church D, Chow B, Zhang K (2006) Use of molecular beacon probes for real-time PCR detection of plasmodium falciparum and other plasmodium species in peripheral blood specimens. J Clin Microbiol 44:622–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Liu X, Schuster S, Wan W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922

    Article  CAS  Google Scholar 

  • Fang X, Li JJ, Tan W (2000) Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal Chem 72:3280–3285

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Zhu X, Wang C, Shangguan L (2016) Applications of DNA technologies in agriculture. Curr Genomics 17(4):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari EAP, Colombo RC, Faria RTD, Takane RJ (2016) Cryopreservation of seeds of Encholirium spectabile Martius ex Schultes f. by the vitrification method. Rev Ciênc Agron 47(1):172–177

    Article  Google Scholar 

  • Göhring J, Jacak J, Barta A (2014) Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. Plant Cell 26(2):754–764

    Google Scholar 

  • Gupta V, Sengupta M, Prakash J, Tripathy BC (2017) Plant biotechnology and agriculture. In: Basic and applied aspects of biotechnology. Springer, Singapore, pp 415–452

    Chapter  Google Scholar 

  • Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J (2015) Molecular marker applications in plants. Plant Genotyping: Methods Protoc:13–27

    Google Scholar 

  • Heinrichs A (2007) Making the cut: discovery of restriction enzymes. Nature Milestones

    Google Scholar 

  • Hiyoshi M, Hosoi S (1994) Assay of DNA denaturation by polymerase chain reaction-driven fluorescent label incorporation and fluorescence resonance energy transfer. Anal Biochem 221:306–311

    Article  CAS  PubMed  Google Scholar 

  • Kamboj A, Pateriya AK, Mishra A, Ranaware P, Kulkarni DD, Raut AA (2014) Novel molecular beacon probe-based real-time RT-PCR assay for diagnosis of Crimean-Congo hemorrhagic fever encountered in India. Biomed Res Int 2014(5):1–4. https://doi.org/10.1155/2014/496219

  • Kao KN, Constabel F, Michayluk MR, Gamborg OL (1974) Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120(3):215–227

    Article  CAS  PubMed  Google Scholar 

  • Konforti B (2000) The servant with the scissors. Nat Struct Biol 7:99–100

    Article  CAS  PubMed  Google Scholar 

  • Kostrikis LG, Tyagi S, Mhlanga MM, Ho DD, Kramer FR (1998) Spectral genotyping of human alleles. Science 279:1228–1229

    Article  CAS  PubMed  Google Scholar 

  • Krusiński T, Wietrzych M, Grad I, Ożyhar A, Dobryszycki P (2008) Equilibrium analysis of the DNA binding domain of the ultraspiracle protein interaction with the response element from the hsp27 gene promoter—the application of molecular beacon technology. J Fluoresc 18:1–10

    Article  PubMed  Google Scholar 

  • Lata P, Ram S, Agrawal M, Shanker R (2009) Real time PCR for the rapid detection of vanA gene in surface waters and aquatic macrophyte by molecular beacon probe. Environ Sci Technol 43:3343–3348

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Mathew J, Pfahler W, Ma D, Valinsky J, Prince AM, Andrus L (2005) Individual donor nucleic acid amplification testing for detection of West Nile virus. J Clin Microbiol 43:5111–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 4(4):421–429

    Article  Google Scholar 

  • Li JJ, Fang X, Schuster SM, Tan W (2000) Molecular beacons: a novel approach to detect protein-DNA interactions. Angew Chem Int Ed Engl 39:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Lohman TM, Ferrari ME (1994) Escherichia Coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  CAS  PubMed  Google Scholar 

  • Marras SAE, Kramer FR, Tyagi S (1999) Multiplex detection single-nucleotide variations using molecular beacons. Genet Anal Biomol Eng 14:151–156

    Article  CAS  Google Scholar 

  • Marras SAE, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30:e122

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz E, Estrada G, Lizardi PM (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol Cell Probes 12:219–226

    Article  CAS  PubMed  Google Scholar 

  • Parashar D, Chauhan DS, Sharma VD, Katoch VM (2006) Applications of real-time PCR technology to mycobacterial research. Indian J Med Res 124(4):385

    Google Scholar 

  • Pas SD, Noppornpanth S, van der Eijk AA, de Man RA, Niesters HG (2005) Quantification of the newly detected lamivudine resistant YSDD variants of Hepatitis B virus using molecular beacons. J Clin Virol 32:166–172

    Article  CAS  PubMed  Google Scholar 

  • Poddar SK (1999) Detection of adenovirus using PCR and molecular beacon. J Virol Methods 82:19–26

    Article  CAS  PubMed  Google Scholar 

  • Pohl G, Shih IM (2004) Principle and applications of digital PCR. Expert Rev Mol Diagn 4(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Prajapati GK, Pandey DM (2015) Molecular Beacon probe based promoter motifs validation in anoxia responsive DEGs and their in silico interaction studies with AP2/EREBP TF in rice (Oryza sativa L). Int J Pharm Pharm Sci 7(3):123–130

    CAS  Google Scholar 

  • Prajapati GK, Kashayp N, Kumar A, Pandey DM (2013) Identification of GCC box in the promoter region of ubiquinol cytochrome C chaperone gene using molecular beacon probe and its in silico protein-DNA interaction study in rice (Oryza sativa L.) Int J Comput Bioinforma In Silico Mod 2(5):213–222

    Google Scholar 

  • Prosen D, Hatziloukas E, Panopoulos NJ, Schaad NW (1991) Direct detection of the halo blight pathogen Pseudomonas syringae pv. phaseolicola in bean seed by DNA amplification. Phytopathology 81:1159. (Abstr.)

    Google Scholar 

  • Rasmussen OF, Wulff BS (1991) Detection of Pseudomonas syringae pv. pisi using PCR. In: Proceedings 4th international Working Group on Pseudomonas syringae Pathovars. Kluwer Academic Publishers, Dordrecht, pp 369–376

    Google Scholar 

  • Raza K, Ahmad S (2016) Principle, analysis, application and challenges of next-generation sequencing: a review. arXiv preprint arXiv:1606.05254

    Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Google Scholar 

  • Smith KF, de Salas M, Adamson J, Rhodes LL (2014) Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniacea. Mar Drugs 12:1361–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WH, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA, Barker I, Boonham N (2007) Improved molecular detection of faster, simpler, more-specific methods for Phytophthora ramorum in the field. Appl Environ Microbiol 73:4040–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen L, Long Y, Tian H, Wu J (2013) Molecular beacons of xeno-nucleic acid for detecting nucleic acid. Theranostics 3(6):395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CS, Peng L, You M, Han D, Chen T, Williams KR, Yang CJ, Tan W (2012) Engineering molecular beacons for intracellular imaging. Int J Mol Imag. https://doi.org/10.1155/2012/501579

  • Xiang D, Zha K, Xiang W, Wang L (2014) Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I. Talanta 129:249–253

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zhuang H, Zhou C (2009) Detection of naphthalene by real-time immuno-PCR using molecular beacon. Mol Cell Probes 23:29

    Article  CAS  PubMed  Google Scholar 

  • You M, Yang CJ, Tan W (2013) Molecular Beacons for Detection of Single-Nucleotide Polymorphisms. In: Molecular Beacons. Springer, Berlin, Heidelberg, pp 61–74

    Google Scholar 

  • Zargar SM, Raatz B, Sonah H, Bhat JA, Dar ZA, Agrawal GK, Rakwal R (2015) Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. J Crop Sci Biotechnol 18(5):293–308

    Article  Google Scholar 

  • Zimmermann U, Scheurich P (1981) High frequency fusion of plant protoplasts by electric fields. Planta 151(1):26–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Mani Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Prajapati, G.K., Mishra, A.N., Pandey, D.M. (2018). Recent Biotechnological Approaches to Produce Climate-Ready Crops and Enhancing Crop Productivity. In: Sengar, R., Singh, A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_2

Download citation

Publish with us

Policies and ethics