Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 652 Accesses

Abstract

AFM is a powerful tool for quantifying single-cell mechanics. The principle and methods of measuring cellular Young’s modulus by AFM was firstly presented. Then spherical probes were fabricated by gluing individual spheres to the AFM probe based on optical-guided AFM micromanipulations. With the use of spherical probes, the Young's modulus of human erythrocytes and three types of human suspended cancerous cells with different invasiveness was measured, showing the close links between cell elasticity and cell invasiveness capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumor progression. Nat Rev Cancer 9:108–122

    Article  Google Scholar 

  2. Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  ADS  Google Scholar 

  3. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323

    Article  Google Scholar 

  4. Di Carlo D (2012) A mechanical biomarker of cell state in medicine. J Lab Autom 17:32–42

    Article  Google Scholar 

  5. Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:11–118

    Article  Google Scholar 

  6. Cross SE, Jin YS, Rao JY et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  ADS  Google Scholar 

  7. Xu W, Mezencev R, Kim B et al (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7:e46609

    Article  ADS  Google Scholar 

  8. Li M, Liu L, Xi N et al (2012) Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci 55:968–973

    Article  Google Scholar 

  9. Suresh S (2007) Elastic clues in cancer detection. Nat Nanotechnol 2:748–749

    Article  ADS  Google Scholar 

  10. Reich A, Meurer M, Eckes B et al (2009) Surface morphology and mechanical properties of fibroblasts from scleroderma patients. J Cell Mol Med 13:1644–1652

    Article  Google Scholar 

  11. Plodinec M, Loparic M, Monnier C et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765

    Article  ADS  Google Scholar 

  12. Li M, Liu L, Xi N et al (2014) Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy. Chin Sci Bull 59:4020–4029

    Article  Google Scholar 

  13. Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169

    Article  Google Scholar 

  14. Radmacher M, Monika F, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270

    Article  Google Scholar 

  15. Maivald P, Butt HJ, Gould SAC et al (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2:103–106

    Article  ADS  Google Scholar 

  16. Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microsocopy. J Cell Sci 107:1105–1114

    Google Scholar 

  17. Radmacher M, Fritz M, Kacher CM et al (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 79:556–567

    Article  Google Scholar 

  18. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeleton structure and mechanics in fibroblast: an atomic force microscopy study. Biophys J 78:520–535

    Article  Google Scholar 

  19. Cuerrier CM, Gagner A, Lebel R et al (2009) Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 22:389–396

    Article  Google Scholar 

  20. Pelling AE, Veraitch FS, Chu CPK et al (2009) Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskeleton 66:409–422

    Article  Google Scholar 

  21. Hu M, Wang J, Zhao H et al (2009) Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 42:1513–1519

    Article  Google Scholar 

  22. Liu Y, Feng J, Shi L et al (2012) In situ mechanical analysis of cardiomyocytes at nano scales. Nanoscale 4:99–102

    Article  ADS  Google Scholar 

  23. Mahaffy RE, Shih CK, MacKintosh FC et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880–883

    Article  ADS  Google Scholar 

  24. Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50:81–92

    Article  Google Scholar 

  25. Leporatti S, Gerth A, Kohler G et al (2006) Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages. FEBS Lett 580:450–454

    Article  Google Scholar 

  26. Oberleithner H, Callies C, Kusche-Vihrog K et al (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106:2829–2834

    Article  ADS  Google Scholar 

  27. Lulevich V, Yang H, Isseroff RR et al (2010) Single cell mechanics of keratinocyte cells. Ultramicroscopy 110:1435–1442

    Article  Google Scholar 

  28. Nikkhah M, Strobl JS, Schmelz EM et al (2011) Evaluation of the influence of growth medium composition on cell elasticity. J Biomech 44:762–766

    Article  Google Scholar 

  29. Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84

    Article  Google Scholar 

  30. Li M, Liu L, Xi N et al (2013) Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Chin Sci Bull 58:1516–1519

    Article  Google Scholar 

  31. Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372

    Article  Google Scholar 

  32. Kasas S, Longo G, Dietler G (2013) Mechanical properties of biological specimens explored by atomic force microscopy. J Phys D Appl Phys 46:133001

    Article  ADS  Google Scholar 

  33. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  ADS  Google Scholar 

  34. Li M, Dang D, Liu L et al (2017) Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans Nanobiosci 16:523–540

    Google Scholar 

  35. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI et al (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833

    Article  Google Scholar 

  36. Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscopy tips. Nat Nanotechnol 7:733–736

    Article  ADS  Google Scholar 

  37. Bruckner BR, Noding H, Janshoff A (2017) Viscoelastic properties of confluent MDCK II cells obtained from force cycle experiments. Biophys J 112:724–735

    Article  Google Scholar 

  38. Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  Google Scholar 

  39. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  ADS  Google Scholar 

  40. Lekka M (2016) Discrimination between normal and cancerous cells using AFM. Bionanoscience 6:65–80

    Article  Google Scholar 

  41. Li M, Liu L, Xiao X et al (2016) Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. J Biol Phys 42:551–569

    Article  Google Scholar 

  42. Merkel R, Nassoy P, Leung A et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  ADS  Google Scholar 

  43. Li M, Liu L, Xi N et al (2011) Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun 404:689–694

    Article  Google Scholar 

  44. Li M, Liu L, Xi N et al (2012) Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin 28:1502–1508

    Google Scholar 

  45. Vargas-Pinto R, Gong H, Vahabikashi A et al (2013) The effect of endothelial cell cortex on atomic force microscopy measurements. Biophys J 105:300–309

    Article  Google Scholar 

  46. Dave SS, Fu K, Wright GW et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442

    Article  Google Scholar 

  47. Diamandidou E, Cohen PR, Kurzrock R (1996) Mycosis fungoides and sezary syndrome. Blood 88:2385–2409

    Google Scholar 

  48. Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    Google Scholar 

  49. Kiberstis PA (2016) Metastasis: an evolving story. Science 352:162–163

    Article  ADS  Google Scholar 

  50. Jin H, Pi J, Huang X et al (2012) BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol 93:1715–1723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, M. (2018). Measuring the Mechanical Properties of Single Cells by AFM. In: Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6829-4_3

Download citation

Publish with us

Policies and ethics