Skip to main content

Genistein and Its Role in Regulation of AP-1 in Colorectal Cancer

  • Chapter
  • First Online:
  • 459 Accesses

Abstract

Colorectal cancer (CRC) is a prominent source of cancer-related deaths across the world. AP-1 is involved in CRC growth and metastasis. AP-1 is a transcription factor that regulates many oncogenic transduction pathways. In the current chapter, we discuss the importance of AP-1 on CRC growth and metastasis. Additionally, we discuss the mechanism of genistein, a tyrosine kinase inhibitor, and its effect on CRC treatment.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen J, Lin C, Yong W, Ye Y, Huang Z (2015) Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem 35:722–728

    Article  CAS  PubMed  Google Scholar 

  2. Yan GR, Xiao CL, He GW et al (2010) Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics 10:976–986

    PubMed  CAS  Google Scholar 

  3. Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J (2014) Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One 9:e91245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA (2015) Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta (BBA)-Rev Cancer 1855:104–121

    Article  CAS  Google Scholar 

  5. Gu S, Papadopoulou N, Nasir O et al (2011) Activation of membrane androgen receptors in colon cancer inhibits the prosurvival signals Akt/bad in vitro and in vivo and blocks migration via vinculin/actin signaling. Mol Med 17:48

    Article  CAS  PubMed  Google Scholar 

  6. Gruca A, Krawczyk Z, Szeja W, Grynkiewicz G, Rusin A (2014) Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules 19:18558–18573

    Article  CAS  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  Google Scholar 

  8. Salazar R, Roepman P, Capella G et al (2010) Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 29:17–24

    Article  PubMed  Google Scholar 

  9. Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157–177

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu H, Mack TM, Ross RK, Henderson BE (1987) Cancer of the gastrointestinal tract among Japanese and White immigrants in Los Angeles County 2. J Natl Cancer Inst 78:223–228

    PubMed  CAS  Google Scholar 

  11. Chung DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119:854–865

    Article  CAS  PubMed  Google Scholar 

  12. Calland J, Adams R, DePrince K, Foley E, Powell S (2000) Genetic syndromes and genetic tests in colorectal cancer. Semin Gastrointest Dis. 2000 Oct;11(4):207–18.

    Google Scholar 

  13. Mann B, Gelos M, Siedow A et al (1999) Target genes of β-catenin–T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci 96:1603–1608

    Article  CAS  PubMed  Google Scholar 

  14. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG (2007) The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 5:109–120

    Article  CAS  PubMed  Google Scholar 

  15. Yao K-S, Xanthoudakis S, Curran T, O’Dwyer PJ (1994) Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia. Mol Cell Biol 14:5997–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Konstantinopoulos PA, Vandoros GP, Karamouzis MV, Gkermpesi M, Sotiropoulou-Bonikou G, Papavassiliou AG (2007) EGF-R is expressed and AP-1 and NF-κ: B are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Anal Cell Pathol 29:477–482

    CAS  Google Scholar 

  17. Debruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Mareel MM (2001) The role of bile acids in carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 480:359–369

    Article  Google Scholar 

  18. Ashida R, Tominaga K, Sasaki E et al (2005) AP-1 and colorectal cancer. Inflammopharmacology 13:113–125

    Article  CAS  PubMed  Google Scholar 

  19. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390

    Article  CAS  Google Scholar 

  20. Sabbah M, Emami S, Redeuilh G et al (2008) Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat 11:123–151

    Article  CAS  PubMed  Google Scholar 

  21. Sarkar FH, Li Y, Wang Z, Padhye S (2010) Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 16:1801–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu Z, Li W, Liu F (2004) Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett 215:159–166

    Article  CAS  PubMed  Google Scholar 

  23. Hwang J-T, Ha J, Park OJ (2005) Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332:433–440

    Article  CAS  PubMed  Google Scholar 

  24. Shen M, Hang Chan T, Ping DQ (2012) Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents) 12:891–901

    CAS  Google Scholar 

  25. Banerjee S, Kong D, Azmi AS et al (2011) Retracted: restoring sensitivity to oxaliplatin by a novel approach in gemcitabine-resistant pancreatic cancer cells in vitro and in vivo. Int J Cancer 128:1240–1250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganji Purnachandra Nagaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merchant, N., Prasad, G.L.V., Nagaraju, G.P. (2017). Genistein and Its Role in Regulation of AP-1 in Colorectal Cancer. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_8

Download citation

Publish with us

Policies and ethics