Skip to main content

Equilibrium-Aware Shape Design for Concrete Printing

  • Chapter
  • First Online:
Humanizing Digital Reality

Abstract

This paper proposes an Interactive Design Environment and outlines the underlying computational framework to adapt equilibrium modelling techniques from rigid-block masonry to the multi-phase material typically used in large-scale additive manufacture. It focuses on enabling the synthesis of geometries that are structurally and materially feasible vis-a-vis 3D printing with compression-dominant materials. The premise of the proposed research is that the material printed in layers can be viewed as micro-scale bricks that are initially soft, and harden over time—a kind of micro-stereotomy. This insight, and the observation about the necessity of design exploration yields the principal contributions of the paper: A computational framework that allows for geometric reasoning about shape and exploration of associated design-space, and early, proof-of-concept results.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at https://doi.org/10.1007/978-981-10-6611-5_56.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bærentzen, J.A., Abdrashitov, R., Singh, K.: Interactive shape modeling using a skeleton-mesh co-representation. ACM Trans. Graph. (TOG) 33(4), 132 (2014)

    Article  Google Scholar 

  • Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. In: ACM SIGGRAPH Computer Graphics, pp. 223–232. ACM (1989)

    Google Scholar 

  • Baraff, D.: An introduction to physically based modeling: rigid body simulation II—nonpenetration constraints. In: SIGGRAPH Course Notes, pp. D31–D68 (1997)

    Google Scholar 

  • Block, P., Ochsendorf, J.: Thrust network analysis: a new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat. Struct. 155, 167 (2007)

    Google Scholar 

  • Buswell, R.A., et al.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. Constr. 16(2), 224–231 (2007)

    Article  Google Scholar 

  • Buswell, R.A., et al.: Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Autom. Constr. 17(8), 923–929 (2008)

    Article  Google Scholar 

  • Chien, S., et al.: Parametric customisation of a 3D concrete printed pavilion. In: Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016, pp. 549–558. The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong (2016)

    Google Scholar 

  • Culmann, K.: Die graphische statik. Meyer & Zeller (A. Reimann), Zurich (1875)

    MATH  Google Scholar 

  • Cundall, P.A.: Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, pp. 107–116. Elsevier (1988)

    Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • CyBe-Construction: CyBe Construction—Redefining Construction. Available at: https://www.cybe.en/ (2016)

  • De Goes, F., et al.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. (TOG) 32(4), 93 (2013)

    MATH  Google Scholar 

  • De Kestelier, X., Buswell, R.A.: A digital design environment for large-scale rapid manufacturing. In: Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 201–208 (2009)

    Google Scholar 

  • Dini, E.: D-Shape. Monolite UK Ltd. http://www.d-shape.com/cose.htm (2009)

  • Fallacara, G.: Toward a stereotomic design: experimental constructions and didactic experiences. In: Proceedings of the Third International Congress on Construction History, p. 553 (2009)

    Google Scholar 

  • Fivet, C., Zastavni, D.: Robert Maillart’s key methods from the Salginatobel Bridge design process (1928). J. Int. Assoc. Shell Spat. Struct. J. IASS 53(171), 39–47 (2012)

    Google Scholar 

  • Frick, U., Van Mele, T., Block, P.: Data management and modelling of complex interfaces in imperfect discrete-element assemblies. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Tokyo, Japan (2016)

    Google Scholar 

  • Frick, U., Van Mele, T., Block, P.: Decomposing three-dimensional shapes into self-supporting, discrete-element assemblies. In: Modelling Behaviour, pp. 187–201. Springer (2015)

    Google Scholar 

  • Gosselin, C., et al.: Large-scale 3D printing of ultra-high performance concrete—a new processing route for architects and builders. Mater. Des. 100, 102–109 (2016)

    Article  Google Scholar 

  • Hahn, J.K.: Realistic animation of rigid bodies. In: ACM SIGGRAPH Computer Graphics, pp. 299–308. ACM (1988)

    Google Scholar 

  • Harada, T.: Real-time rigid body simulation on GPUs. GPU Gems 3, 123–148 (2007)

    Google Scholar 

  • Hart, R., Cundall, P.A., Lemos, J.: Formulation of a three-dimensional distinct element model—part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, pp. 117–125. Elsevier (1988)

    Google Scholar 

  • Hernandez, C.R.B.: Thinking parametric design: introducing parametric Gaudi. Des. Stud. 27(3), 309–324 (2006)

    Article  Google Scholar 

  • Heyman, J.: The stone skeleton. Int. J. Solids Struct. 2(2), 249–279 (1966)

    Article  Google Scholar 

  • Ji, Z., Liu, L., Wang, Y.: B‐Mesh: a modeling system for base meshes of 3D articulated shapes. In: Computer Graphics Forum, pp. 2169–2177. Wiley Online Library (2010)

    Google Scholar 

  • Jiang, C., et al.: Interactive modeling of architectural freeform structures: combining geometry with fabrication and statics. In: Advances in Architectural Geometry 2014, pp. 95–108. Springer (2015)

    Google Scholar 

  • Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. Constr. 13(1), 5–19 (2004)

    Article  Google Scholar 

  • Khoshnevis, B., et al.: Mega-scale fabrication by contour crafting. Int. J. Ind. Syst. Eng. 1(3), 301–320 (2006)

    Google Scholar 

  • Kwon, H.: Experimentation and analysis of contour crafting (CC) process using uncured ceramic materials, thesis, Faculty of the graduate school University of Southern California (2002)

    Google Scholar 

  • Lachauer, L.: Interactive Equilibrium Modelling—A New Approach to the Computer-Aided Exploration of Structures in Architecture. Ph.D. thesis. ETH Zurich, Department of Architecture, Zurich (2015)

    Google Scholar 

  • Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Law, R., et al.: Hardened properties of high-performance printing concrete. Cem. Concr. Res. 42(3), 558–566 (2012a)

    Article  Google Scholar 

  • Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G.F., et al.: Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 45(8), 1221–1232 (2012b)

    Article  Google Scholar 

  • Liu, Y., et al.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (TOG) 32(4), 92 (2013)

    MATH  Google Scholar 

  • Livesley, R.K.: Limit analysis of structures formed from rigid blocks. Int. J. Numer. Methods Eng. 12(12), 1853–1871 (1978)

    Article  MATH  Google Scholar 

  • Livesley, R.K.: A computational model for the limit analysis of three-dimensional masonry structures. Meccanica 27(3), 161–172 (1992)

    Article  MATH  Google Scholar 

  • Mechtcherine, V., et al.: Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications. Mater. Struct. 47(4), 615–630 (2014)

    Article  Google Scholar 

  • Monreal, A.: T-norms, T-conorms, aggregation operators and Gaudí’s columns. In: Soft Computing in Humanities and Social Sciences, pp. 497–515. Springer (2012)

    Google Scholar 

  • Perrot, A., Rangeard, D., Pierre, A.: Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater. Struct. 49(4), 1213–1220 (2016)

    Article  Google Scholar 

  • Rippmann, M.: Funicular Shell Design: Geometric Approaches to Form Finding and Fabrication of Discrete Funicular Structures. Ph.D. Thesis, ETH Zurich, Department of Architecture, Zurich (2016)

    Google Scholar 

  • Sakarovitch, J.: Stereotomy, a multifaceted technique. In: Huerta, S. (ed.) Proceedings of the 1st International Congress on Construction History, Madrid, pp. 69–79 (2003)

    Google Scholar 

  • Shyshko, S., Mechtcherine, V.: Simulating the workability of fresh concrete. In: Proceedings of the International RILEM Symposium Of Concrete Modelling—CONMOD, pp. 173–181 (2008)

    Google Scholar 

  • Stomakhin, A., et al.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)

    Article  MATH  Google Scholar 

  • Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1), 236–252 (1995)

    Article  MATH  Google Scholar 

  • Tang, C., et al.: Form-Finding with Polyhedral Meshes Made Simple. http://www.geometrie.tugraz.at/wallner/formfinding2.pdf (2012)

  • Tanigawa, Y., Mori, H.: Analytical study on deformation of fresh concrete. J. Eng. Mech. 115(3), 493–508 (1989)

    Article  Google Scholar 

  • Van Mele, T., et al.: Best-fit thrust network analysis. In: Shell Structures for Architecture-Form Finding and Optimization, pp. 157–170. Routledge (2014)

    Google Scholar 

  • Vouga, E., et al.: Design of self-supporting surfaces. ACM Trans. Graph. 31(4) (2012)

    Google Scholar 

  • Wangler, T., et al.: Digital concrete: opportunities and challenges. RILEM Tech. Lett. 1, 67–75 (2016)

    Article  Google Scholar 

  • Whiting, E.J.W.: Design of structurally-sound masonry buildings using 3D static analysis, Diss, Massachusetts Institute of Technology (2012)

    Google Scholar 

  • Wolfs, R., Salet, T.A.M.: 3D printing of concrete structures, graduation thesis, Technische Universiteit Eindhoven (2015)

    Google Scholar 

  • XtreeE: XtreeE| The large-scale 3D (2016)

    Google Scholar 

  • Zastavni, D.: The structural design of Maillart’s Chiasso Shed (1924): a graphic procedure. Struct. Eng. Int. 18(3), 247–252 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shajay Bhooshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bhooshan, S., Van Mele, T., Block, P. (2018). Equilibrium-Aware Shape Design for Concrete Printing. In: De Rycke, K., et al. Humanizing Digital Reality. Springer, Singapore. https://doi.org/10.1007/978-981-10-6611-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6611-5_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6610-8

  • Online ISBN: 978-981-10-6611-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics