Skip to main content

Linear Canonical Transforms’ Discretization Formula Based on the Frequency-Domain Convolution Theory

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

  • 118 Accesses

Abstract

The Linear Canonical Transforms’ (LCT) domain not only contains the informations of time and frequency, but also includes the informations of varying frequency with time. Because of these characteristics which makes it have a unique advantage in dealing with nonstationary signals, it attracts more and more scientists and the engineers’ attention. Fourier Transform (FT), Fractional Fourier Transform (FrFT), Fresnel Transform and Scale Transforms can be seen as a special LCT’s form. And in the combination of time-frequency analysis method (Wigner distribution, short-time Fourier transform (STFT), Fuzzy function) [2] on the basis of Linear Canonical Transforms will have more development space. However, the discretization analysis of Linear Canonical Transforms is not clear enough, especially the discretization formula is not suitable for computer’s calculation. Therefore, based on the sampling theorem of bandpass signal, the discretization formula is deduced based on the frequency-domain discretization formula and the convolution formula, and the correctness and reversibility are verified on the computer’s calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, K.K., Joshi, S.D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454–460 (2006)

    Google Scholar 

  2. Pei, S.C., Ding, J.J.: Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Process. 49(8), 1638–1655 (2001)

    Google Scholar 

  3. Hlawatsch, F., Bartels, G.F.B.: Linear and quadratic time-frequency signal representation. IEEE Signal Process. Mag. 9(2), 21–67 (1992)

    Google Scholar 

  4. Robinson, E.A.: A historical perspective of spectrum estimation. Proc. IEEE 70(9), 885–907 (1982)

    Google Scholar 

  5. Torres, R., Pellat, F.P., Torres, Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90(6), 1976–1984 (2010)

    Google Scholar 

  6. Hennelly, B.M., Sheridan, J.T.: Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 22(5), 928–937 (2005)

    Google Scholar 

  7. Healy, J.J., Sheridan, J.T.: Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Letters 33(3), 228–230 (2008)

    Google Scholar 

  8. Xiang, Q., Qin, K.Y., Zhang, C.W.: Sampling theorems of band-limited signals in the linear canonical transform domain. In: 2009 International Workshop on Information Security and Application, Qingdao, pp. 126–129 (2009)

    Google Scholar 

  9. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Google Scholar 

  10. Tao, R., Li, B.Z., Wang, Y.: Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans. Signal Process. 55(7), 3541–3547 (2007)

    Google Scholar 

  11. Li, Y., Zhang, F., Li, Y., Tao, R.: An application of the linear canonical transform correlation for detection of LFM signals. IET Signal Process. (2015)

    Google Scholar 

  12. Zhang, F., Hu, Y., Tao, R., et al.: Signal reconstruction from partial information of discrete linear canonical transform. Optical Eng. 53(3), 1709–1717 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Ma, Y. (2019). Linear Canonical Transforms’ Discretization Formula Based on the Frequency-Domain Convolution Theory. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_166

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_166

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics