Skip to main content

Physical–Chemical Properties of Solid Substrates

  • Chapter
  • First Online:
High-solid and Multi-phase Bioprocess Engineering

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Physical–chemical properties of solid substrates are important parameters of high-solid and multi-phase bioprocess. The chemical properties refer to the biomass recalcitrance and heterogeneity which caused by its chemical composition. The physical properties include porous properties, rheology properties, and water state. In this chapter, the composition and recalcitrance of the solid substrates are analyzed, and the change laws of physical–chemical properties such as porous properties, rheology properties, and water states are revealed, which is significant for bioconversion of biomass in high-solid and multi-phase bioprocess. In addition, solid effects caused by physical–chemical properties of solid substrates were also systematically discussed and investigated with the expectation of guiding bioconversion process of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koppram R, Tomás-Pejó E, Xiros C et al (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53

    Article  CAS  PubMed  Google Scholar 

  2. Mood SH, Golfeshan AH, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energy Rev 27(6):77–93

    Article  CAS  Google Scholar 

  3. Zhao XB, Zhang L, Liu D (2012) Biomass recalcitrance, Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod Bior 6(4):561–579

    Article  CAS  Google Scholar 

  4. Chen HZ, Wang L (2016) Technologies for biochemical conversion of biomass. Chemical Industry Press, Beijing

    Google Scholar 

  5. Pei JC, Ping QW, Tang AM (2012) Plant fiber chemistry. China Light Industry Press, Beijing

    Google Scholar 

  6. Liu RQ (1985) Chemistry basis for cellulose. Science Press, Beijing

    Google Scholar 

  7. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  PubMed  Google Scholar 

  8. O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  9. Himmel ME, Adney WS, Ding SY et al (2007) Biomass recalcitrance: barrier to economic ethanol biorefineries. In: ACS National meeting book of abstracts

    Google Scholar 

  10. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10(6):866–885

    Article  CAS  PubMed  Google Scholar 

  11. Himmel M, Ding S, Johnson D et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  12. Yu B, Chen HZ (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technol 101(23):9114–9119

    Article  CAS  Google Scholar 

  13. Chen HZ, Li ZH (2002) Study on solid-state fermentation and fermenter. Cheml Ind Eng Prog 21(1):37–39

    Google Scholar 

  14. Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymolysis: a review. Bioresource Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  15. Felby C, Thygesen LG, Kristensen JB et al (2008) Cellulosewater interactions during enzymolysis as studied by time domain NMR. Cellulose 15(5):703–710

    Article  CAS  Google Scholar 

  16. Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymolysis of lignocellulose. Biotechnol Biofuel 2(1):11

    Article  CAS  Google Scholar 

  17. Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801

    Article  CAS  PubMed  Google Scholar 

  18. Sui WJ, Chen HZ (2014) Multi-stage energy analysis of steam explosion process. Chem Eng Sci 116(SEP):254–262

    Article  CAS  Google Scholar 

  19. Berry SL, Roderick ML (2005) Plant-water relations and the fibre saturation point. New Phytol 168(1):25–37

    Article  CAS  PubMed  Google Scholar 

  20. Zhang YZ, Chen HZ (2012) Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chem Eng Sci 75(25):177–182

    Article  CAS  Google Scholar 

  21. Cullis IF, Saddler JN, Mansfield SD (2004) Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol Bioeng 85(4):413–421

    Article  CAS  PubMed  Google Scholar 

  22. Ewanick S, Bura R (2011) The effect of biomass moisture content on bioethanol yield from steam pretreated switchgrass and sugarcane bagasse. Bioresource Technol 102(3):2651–2658

    Article  CAS  Google Scholar 

  23. Ferreira LC, Nilsen PJ, Fdz-Polanco F et al (2014) Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242(8):254–259

    Article  CAS  Google Scholar 

  24. Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuel 7(1):1–10

    Article  CAS  Google Scholar 

  25. Roche CM, Dibble CJ, Knutsen JS et al (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300

    Article  CAS  PubMed  Google Scholar 

  26. Deng YY, Koper M, Haigh M et al (2015) Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy 74:253–267

    Article  Google Scholar 

  27. Nicholls D (2015) Bioenergy from forests: the power potential of wood biomass. Science Findings-Pacific Northwest Research Station, USDA Forest Service

    Google Scholar 

  28. Viamajala S, McMillan JD, Schell DJ et al (2009) Rheology of corn stover slurries at high-solids concentrations-effects of saccharification and particle size. Bioresource Technol 100(2):925–934

    Article  CAS  Google Scholar 

  29. Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuel 2(1):28

    Article  CAS  Google Scholar 

  30. Hodge DB, Karim MN, Schell DJ et al (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technol 99(18):8940–8948

    Article  CAS  Google Scholar 

  31. Yang J, Zhang X, Yong Q et al (2011) Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresource Technol 102(7):4905–4908

    Article  CAS  Google Scholar 

  32. Wang W, Zhuang XS, Yuan ZH et al (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technol 108(2):252–257

    Article  CAS  Google Scholar 

  33. Tai C, Keshwani DR, Voltan DS et al (2015) Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnol Bioeng 112(7):1376–1382

    Article  CAS  PubMed  Google Scholar 

  34. Gao YS, Xu JL, Yuan ZH et al (2014) Optimization of fed-batch enzyrnatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technol 167(3):41–45

    Article  CAS  Google Scholar 

  35. Liu ZH, Chen HZ (2016) Biomass–water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. Acs Sustain Chem Eng 4(3):1274–1285

    Article  CAS  Google Scholar 

  36. Modenbach A, Nokes S (2013) Enzymatic hydrolysis of biomass at high-solids loadings–a review. Biomass Bioenergy 56(38):526–544

    Article  CAS  Google Scholar 

  37. Um B, Hanley T (2008) A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor. App Biochem Biotechnol 145(1):29–38

    Article  CAS  Google Scholar 

  38. Knutsen JS, Liberatore MW (2010) Rheology modification and enzyme kinetics of high-solids cellulosic slurries. Energy Fuel 24(12):6506–6512

    Article  CAS  Google Scholar 

  39. Szijarto N, Horan E, Zhang JH et al (2011) Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuel 4(1):2

    Article  CAS  Google Scholar 

  40. Fei BH (2014) Technology used for characterization of mechanical properties of wood cell wall and its application. Science Press, Beijing

    Google Scholar 

  41. Shao ZP (2012) Plant Materials (wood, bamboo) fracture mechanics. Science Press, Beijing

    Google Scholar 

  42. Liu ZH, Chen HZ (2016) Mechanical property of different corn stover morphological fractions and its correlations with high-solids enzymatic hydrolysis by periodic peristalsis. Bioresource Technol 214(AUG):292–302

    Article  CAS  PubMed  Google Scholar 

  43. Jacquet N, Maniet G, Vanderghem C et al (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54(10):2593–2598

    Article  CAS  Google Scholar 

  44. Roberts K, Lavenson D, Tozzi E et al (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high-solids loadings. Cellulose 18(3):759–773

    Article  CAS  Google Scholar 

  45. Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):648–654

    Article  Google Scholar 

  46. Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 33(2):504–513

    Article  CAS  Google Scholar 

  47. Chen HZ, Fu XG (2010) Periodic peristaltic stirring method. China Patent, CN101773799A

    Google Scholar 

  48. Liu ZH, Chen HZ (2016) Periodic peristalsis releasing constrained water in high solids enzymolysis of steam exploded corn stover. Bioresource Technol 205(APR):142–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H. (2018). Physical–Chemical Properties of Solid Substrates. In: High-solid and Multi-phase Bioprocess Engineering. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6352-7_2

Download citation

Publish with us

Policies and ethics