Skip to main content

Role of Proteases in Regulating Cell Death Pathways

  • Chapter
  • First Online:
  • 647 Accesses

Abstract

Cell death is a critical process involved during development, tissue homeostasis, and aging. Multiple forms of cell death exist such as apoptosis (type I cell death), necrosis, and autophagy (type II cell death). Recently, other selective forms of cell death such as pyroptosis, eryptosis, entosis, mitophagy, and oncosis are also reported. These cell death pathways collaborate with each other, and regulation of such mechanisms is crucial for maintaining cellular homeostasis. Interestingly, proteases are the one that mediate the cell death programs, and immense research is focused on elucidating the mechanisms through which protease regulates cell death program. In this chapter, we focus on various cell death pathways and how protease regulates these pathways.

This is a preview of subscription content, log in via an institution.

References

  1. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7(12):a006080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44(2):221–231

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356

    Article  CAS  PubMed  Google Scholar 

  4. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7):544–558

    Article  CAS  PubMed  Google Scholar 

  5. Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145(1310):1312–3638

    Google Scholar 

  6. Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  CAS  PubMed  Google Scholar 

  7. Bulteau AL, Bayot A (2011) Mitochondrial proteases and cancer. Biochim Biophys Acta 1807(6):595–601

    Article  CAS  PubMed  Google Scholar 

  8. Troy CM, Jean YY (2015) Caspases: therapeutic targets in neurologic disease. Neurotherapeutics 12(1):42–48

    Article  CAS  PubMed  Google Scholar 

  9. Qureshi N, Morrison DC, Reis J (2012) Proteasome protease mediated regulation of cytokine induction and inflammation. Biochim Biophys Acta 1823(11):2087–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF (2014) Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol 115(4):301–314

    Article  CAS  PubMed  Google Scholar 

  11. Verdoes M, Verhelst SH (2016) Detection of protease activity in cells and animals. Biochim Biophys Acta 1864(1):130–142

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott CJ, Taggart CC (2010) Biologic protease inhibitors as novel therapeutic agents. Biochimie 92(11):1681–1688

    Article  CAS  PubMed  Google Scholar 

  14. Joyce JA, Hanahan D (2004) Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3(12):619–1516

    Article  Google Scholar 

  15. Jedeszko C, Sloane BF (2004) Cysteine cathepsins in human cancer. Biol Chem 385(11):1017–1027

    Article  CAS  PubMed  Google Scholar 

  16. Henneke I, Greschus S, Savai R, Korfei M, Markart P, Mahavadi P, Schermuly RT, Wygrecka M, Stürzebecher J, Seeger W, Günther A, Ruppert C (2010) Inhibition of urokinase activity reduces primary tumor growth and metastasis formation in a murine lung carcinoma model. Am J Respir Crit Care Med 181(6):611–619

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell BS (2003) The proteasome–an emerging therapeutic target in cancer. N Engl J Med 348(26):2597–2598

    Article  PubMed  Google Scholar 

  18. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79(1):13–21

    Article  CAS  PubMed  Google Scholar 

  19. Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 72(2):2215–2223

    Google Scholar 

  20. Barrett AJ (1970) Cathepsin D. Purification of isoenzymes from human and chicken liver. Biochem J 117(3):601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li NG, Tang YP, Duan JA, Shi ZH (2014) Matrix metalloproteinase inhibitors: a patent review (2011–2013). Expert Opin Ther Pat 24(9):1039–1052

    Article  CAS  PubMed  Google Scholar 

  22. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799

    Article  CAS  PubMed  Google Scholar 

  23. Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774

    Article  CAS  PubMed  Google Scholar 

  25. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    Article  CAS  PubMed  Google Scholar 

  26. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  CAS  PubMed  Google Scholar 

  27. Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6(1):60–64

    Article  CAS  PubMed  Google Scholar 

  28. Duffy MJ (1996) Proteases as prognostic markers in cancer. Clin Cancer Res 2(4):613–618

    CAS  PubMed  Google Scholar 

  29. Hu L, Roth JM, Brooks P, Luty J, Karpatkin S (2008) Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res 68(12):4666–4673

    Article  CAS  PubMed  Google Scholar 

  30. Martinelli P, Rugarli E (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797(1):1–10

    Article  CAS  PubMed  Google Scholar 

  31. Tatsuta T, Augustin S, Nolden M, Friedrichs B, Langer T (2007) m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 26(2):325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuliga M (2015) The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 437695

    Google Scholar 

  33. Xie Y, Gao K, Häkkinen L, Larjava HS (2009) Mice lacking beta6 integrin in skin show accelerated wound repair in dexamethasone impaired wound healing model. Wound Repair Regen 17(3):326–339

    Article  PubMed  Google Scholar 

  34. Florsheim E, Yu S, Bragatto I, Faustino L, Gomes E, Ramos RN, Barbuto JA, Medzhitov R, Russo M (2015) Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. J Immunol 194(10):4621–4630

    Article  CAS  PubMed  Google Scholar 

  35. Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G (2007) Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review. Gerontology 54(2):92–99

    Article  Google Scholar 

  36. Xiong S, Mu T, Wang G, Jiang X (2014) Mitochondria-mediated apoptosis in mammals. Protein Cell 5(10):737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Herman B (2002) Ageing and apoptosis. Mech Ageing Dev 123(4):245–260

    Article  CAS  PubMed  Google Scholar 

  38. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45(3):528–537

    Article  CAS  PubMed  Google Scholar 

  39. Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Henson PM, Bratton DL (2013) Antiinflammatory effects of apoptotic cells. J Clin Invest 123(7):2773–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829

    Article  CAS  PubMed  Google Scholar 

  43. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  44. Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66(8):1403–1408

    Article  CAS  PubMed  Google Scholar 

  45. Fulda S (2015) Targeting extrinsic apoptosis in cancer: challenges and opportunities. Semin Cell Dev Biol 39:20–25

    Article  CAS  PubMed  Google Scholar 

  46. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801

    Article  CAS  PubMed  Google Scholar 

  47. Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q, Chen R, Peng T (2009) Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res 78(1):33–39

    Article  CAS  PubMed  Google Scholar 

  48. Covington MD, Schnellmann RG (2012) Chronic high glucose downregulates mitochondrial calpain 10 and contributes to renal cell death and diabetes-induced renal injury. Kidney Int 81(4):391–400

    Article  CAS  PubMed  Google Scholar 

  49. Bajaj G, Sharma RK (2006) TNF-alpha-mediated cardiomyocyte apoptosis involves caspase-12 and calpain. Biochem Biophys Res Commun 345(4):1558–1564

    Article  CAS  PubMed  Google Scholar 

  50. de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7(9):847–849

    Article  PubMed  CAS  Google Scholar 

  51. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A (1996) Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 15(15):3861–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turk B, Stoka V (2007) Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett 581(15):2761–2767

    Article  CAS  PubMed  Google Scholar 

  53. Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14(1):66–72

    Article  CAS  PubMed  Google Scholar 

  54. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279(5):3578–3587

    Article  CAS  PubMed  Google Scholar 

  55. Blomgran R, Zheng L, Stendahl O (2007) Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81(5):1213–1223

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    Article  CAS  PubMed  Google Scholar 

  57. Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278(33):31401–31411

    Article  CAS  PubMed  Google Scholar 

  58. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283(27):19140–19150

    Article  CAS  PubMed  Google Scholar 

  59. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    Article  CAS  PubMed  Google Scholar 

  60. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klionsky DJ, Cuervo AM, Dunn WA Jr, Levine B, van der Klei I, Seglen PO (2007) How shall I eat thee? Autophagy 3(5):413–416

    Article  PubMed  Google Scholar 

  62. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18

    Article  CAS  PubMed  Google Scholar 

  63. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  64. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695

    Article  CAS  PubMed  Google Scholar 

  67. Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M (1998) Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J 17(13):3597–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin C (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278(6):3671–3678

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 286(9):7327–73238

    Article  CAS  PubMed  Google Scholar 

  70. Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL (2003) A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 278(51):51841–51850

    Article  CAS  PubMed  Google Scholar 

  71. Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21(1):86–102

    Article  CAS  PubMed  Google Scholar 

  72. Norman JM, Cohen GM, Bampton ET (2015) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6(8):1042–1056

    Article  CAS  Google Scholar 

  73. Wolf J, Dewi DL, Fredebohm J, Müller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6):R109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, López-Otin C (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282(25):18573–18583

    Article  CAS  PubMed  Google Scholar 

  75. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    Article  CAS  PubMed  Google Scholar 

  76. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1(2):66–74

    Article  CAS  PubMed  Google Scholar 

  77. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19(1):87–95

    Article  CAS  PubMed  Google Scholar 

  78. Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC (2009) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274(1):95–100

    Article  CAS  PubMed  Google Scholar 

  79. Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6(8):1042–1056

    Article  CAS  PubMed  Google Scholar 

  80. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27):6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897

    Article  CAS  PubMed  Google Scholar 

  82. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8(3):207–220

    Article  CAS  PubMed  Google Scholar 

  83. Poon IK, Hulett MD, Parish CR (2010) Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 17(3):381–397

    Article  CAS  PubMed  Google Scholar 

  84. Jacobson LS, Lima H Jr, Goldberg MF, Gocheva V, Tsiperson V, Sutterwala FS, Joyce JA, Gapp BV, Blomen VA, Chandran K, Brummelkamp TR, Diaz-Griffero F, Brojatsch J (2013) Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J Biol Chem 288(11):7481–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ueda N, Walker PD, Hsu SM, Shah SV (1995) Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphologic features of apoptosis. Proc Natl Acad Sci U S A 92(16):7202–7206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ueda N, Shah SV (2000) Tubular cell damage in acute renal failure-apoptosis, necrosis, or both. Nephrol Dial Transplant 15(3):318–323

    Article  CAS  PubMed  Google Scholar 

  87. Meli E, Pangallo M, Picca R, Baronti R, Moroni F, Pellegrini-Giampietro DE (2004) Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 25(1):172–180

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, Ryter SW, Dai C, Tang ZL, Watkins SC, Yin XM, Song R, Choi AM (2003) Necrotic cell death in response to oxidant stress involves the activation of the apoptogenic caspase-8/bid pathway. J Biol Chem 278(31):29184–29191

    Article  CAS  PubMed  Google Scholar 

  89. Lockshin RA, Zakeri Z (2002) Caspase-independent cell deaths. Curr Opin Cell Biol 14(6):727–733

    Article  CAS  PubMed  Google Scholar 

  90. Newton K, Manning G (2016) Necroptosis and Inflammation. Annu Rev Biochem 85:743–763

    Article  CAS  PubMed  Google Scholar 

  91. Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10(4):348–355

    Article  CAS  PubMed  Google Scholar 

  92. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930

    Article  CAS  PubMed  Google Scholar 

  93. Chen D, Yu J (1865) Zhang L (2016) Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta 2:228–236

    Google Scholar 

  94. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358(6382):167–169

    Article  CAS  PubMed  Google Scholar 

  96. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  97. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825

    Article  CAS  PubMed  Google Scholar 

  98. Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL, Zhan J, Tong YN, Lin LR, He YN (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol 306(1):F75–F84

    Article  CAS  PubMed  Google Scholar 

  99. Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, Ernst RK, Yamamoto M, Miao EA, Coers J (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A 111(16):6046–6051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G (2015) Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. Immunity 43(5):923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cerqueira DM, Pereira MS, Silva AL, Cunha LD, Zamboni DS (2015) Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated legionella species in mouse macrophages and in vivo. J Immunol 195(5):2303–2311

    Article  CAS  PubMed  Google Scholar 

  102. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16(1–3):1–8

    Article  CAS  PubMed  Google Scholar 

  103. Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8(12):1197–1206

    Article  CAS  PubMed  Google Scholar 

  104. Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8(12):1143–1156

    Article  CAS  PubMed  Google Scholar 

  105. Weil M, Jacobson MD, Raff MC (1998) Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes. J Cell Sci 111(Pt 18):2707–2715

    CAS  PubMed  Google Scholar 

  106. Ogen-Shtern N, Ben David T, Lederkremer GZ (2016) Protein aggregation and ER stress. Brain Res pii: S0006-8993(16)30183-4

    Google Scholar 

  107. Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8(3):150–159

    Article  CAS  PubMed  Google Scholar 

  108. Kaufman RJ, Scheuner D, Schröder M, Shen X, Lee K, Liu CY, Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3(6):411–421

    Article  CAS  PubMed  Google Scholar 

  109. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    Article  CAS  PubMed  Google Scholar 

  111. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293(2):722–726

    Article  CAS  PubMed  Google Scholar 

  113. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429(6987):75–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank the support of University Grants Commission (UGC)-UPE Phase II for carrying out a part of work in calcium signaling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapasam Sudhandiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Divya, T., Vasudevan, S., Sudhandiran, G. (2017). Role of Proteases in Regulating Cell Death Pathways. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_21

Download citation

Publish with us

Policies and ethics