Skip to main content

Polysaccharide-Based Polymer Gels and Their Potential Applications

  • Chapter
  • First Online:
Polymer Gels

Abstract

Utilization of polysaccharides as precursors to develop new polymer gels has been growing recently due to their superior inherent properties such as biodegradability, chemical activity, biocompatibility, non-toxicity, abundance, and affordable price. This chapter discusses polymer gels in terms of chemical structures, modifications, the main properties of promising polysaccharide precursors, the most common crosslinkers, and methods of crosslinking either by physical or chemical methods along with mode of interactions. It also highlights the different techniques used to characterize and evaluate the performance and functional properties of the fabricated gels as well as their potential applications in different fields. Finally, recent developments and future trends are considered to cope with the growing demands for engineering novel polymer gels for further ecofriendly successful applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  PubMed  CAS  Google Scholar 

  • Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  PubMed  CAS  Google Scholar 

  • Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS (2007) Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28:5518–5525

    Article  PubMed  CAS  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  PubMed  CAS  Google Scholar 

  • Azlan K, Wan Saime WN, Lai Ken L (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21:296–302

    Article  CAS  Google Scholar 

  • Bacaita ES, Ciobanu BC, Popa M, Agop M, Desbrieres J (2014) Phases in the temporal multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels. Phys Chem Chem Phys 16:25896–25905

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Guillot S, Dabboue H, Tranchant J-F, Salvetat J (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9:505–509

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  PubMed  CAS  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56

    Article  CAS  Google Scholar 

  • Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10:609–616

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang P-C, Liu B-Y, Liu C-M, Chou H-H, Ho M-H, Liu H-C, Wang D-M, Hou L-T (2007) Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A 81:771–780

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  • Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2009a) Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresour Technol 100:3862–3868

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2009b) Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour Technol 100:2803–2809

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Chatterjee T, Woo SH (2010a) A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresour Technol 101:3853–3858

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Lee MW, Wooa SH (2010b) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y-H, Yang S-H, Su W-Y, Chen Y-C, Yang K-C, Cheng WT-K, Wu S, Lin F (2010) Thermosensitive Chitosan–Gelatin–Glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A 16:695–703

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2014) In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.39934

    Article  Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279

    Article  PubMed  CAS  Google Scholar 

  • Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214

    Article  PubMed  CAS  Google Scholar 

  • Dahou W, Ghemati D, Oudia A, Aliouche D (2010) Preparation and biological characterization of cellulose graft copolymers. Biochem Eng J 48:187–194

    Article  CAS  Google Scholar 

  • El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy DE-S (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci Part A 45:628–634

    Article  CAS  Google Scholar 

  • Farag S, Al-Afaleq EI (2002) Preparation and characterization of saponified delignified cellulose polyacrylonitrile-graft copolymer. Carbohydr Polym 48:1–5

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14

    Article  PubMed  CAS  Google Scholar 

  • George M, Abraham TE (2007) pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456

    Article  CAS  Google Scholar 

  • Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31

    Article  PubMed  CAS  Google Scholar 

  • Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solids Struct 46:3282–3289

    Article  CAS  Google Scholar 

  • Hurtado PI, Berthier L, Kob W (2007) Heterogeneous diffusion in a reversible gel. Phys Rev Lett 98:98–101

    Article  CAS  Google Scholar 

  • Ibrahim NA, Abo‐Shosha MH, El‐Zairy EA, El‐Zairy EM (2006) New thickening agents for reactive printing of cellulosic fabrics. J Appl Poly Sci 101(6):4430–4439

    Google Scholar 

  • Ibrahim NA, Eid BM, El-Zairy ER (2011) Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex. Carbohydr Polym 86:1313–1319

    Article  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, El-Aziz EA, Elmaaty TMA, Ramadan SM (2017) Loading of chitosan – Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. Int J Biol Macromol 105: 769–776

    Google Scholar 

  • Ibrahim NA, Abou Elmaaty TM, Eid BM, Abd El-Aziz E (2013a) Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydr Polym 95:379–388

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Elmaaty TMA, El-Aziz EA (2013b) A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr Polym 94:612–618

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Youssef MA, Ibrahim HM, Ameen HA, Salah AM (2013c) Multifunctional finishing of cellulosic/polyester blended fabrics. Carbohydr Polym 97:783–793

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim NA, El-Zairy EMR, Abdalla WA, Khalil HM (2013d) Combined UV-protecting and reactive printing of cellulosic/wool blends. Carbohydr Polym 92:1386–1394

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim NA, Khalil HM, El-Zairy EMR, Abdalla WA (2013e) Smart options for simultaneous functionalization and pigment coloration of cellulosic/wool blends. Carbohydr Polym 96:200–210

    Article  PubMed  CAS  Google Scholar 

  • Ishihara M, Obara K, Nakamura S et al (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9:8–16

    Article  PubMed  CAS  Google Scholar 

  • Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:489–499

    Article  CAS  Google Scholar 

  • Jameela SR, Lakshmi S, James NR, Jayakrishnan A (2002) Preparation and evaluation of photocrosslinkable chitosan as a drug delivery matrix. J Appl Polym Sci 86:1873–1877

    Article  CAS  Google Scholar 

  • Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364

    Article  PubMed  CAS  Google Scholar 

  • Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    Article  PubMed  CAS  Google Scholar 

  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289

    Article  CAS  Google Scholar 

  • Ki HB, Jun JY, Tae GP (2006) Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol Prog 22:297–302

    Article  CAS  Google Scholar 

  • Kim M-S, Choi Y-J, Noh I, Tae G (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res, Part A 83A:674–682

    Article  CAS  Google Scholar 

  • Kitazono E, Kaneko H (2012) Hyaluronic acid compound, hydrogel thereof and joint treating material. 2

    Google Scholar 

  • Koschella A, Hartlieb M, Heinze T (2011) A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym 86:154–161

    Article  CAS  Google Scholar 

  • Kriegel R (2004) Divinyl sulfone crosslinking agents and methods of use in subterranean applications

    Google Scholar 

  • Kulkarni RV, Sa B (2008) Evaluation of pH-sensitivity and drug release characteristics of (polyacrylamide-grafted-xanthan)-carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm 34:1406–1414

    Article  PubMed  CAS  Google Scholar 

  • Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486

    Article  CAS  Google Scholar 

  • Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KY, Bouhadir KH, Mooney DJ (2004) Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials 25:2461–2466

    Article  PubMed  CAS  Google Scholar 

  • Lee F, Chung JE, Kurisawa M (2008a) An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4:880–887

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Singh P, Thomason WH, Fogler HS (2008b) Waxy oil gel breaking mechanisms: adhesive versus cohesive failure. Energy Fuels 22:480–487

    Article  CAS  Google Scholar 

  • Li X, Xu S, Wang J, Chen X, Feng S (2009) Structure and characterization of amphoteric semi-IPN hydrogel based on cationic starch. Carbohydr Polym 75:688–693

    Article  CAS  Google Scholar 

  • Lim S-H, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339:313–319

    Article  PubMed  CAS  Google Scholar 

  • Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444

    Article  CAS  Google Scholar 

  • Marsano E, Bianchi E, Sciutto L (2003) Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer (Guildf) 44:6835–6841

    Article  CAS  Google Scholar 

  • Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C Polym Rev 36:405–430

    Article  Google Scholar 

  • Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater 62:605–611

    Article  CAS  Google Scholar 

  • Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    Article  PubMed  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9

    Article  CAS  Google Scholar 

  • Nada AA, Hauser P, Hudson SM (2011) The grafting of per-(2,3,6-O-allyl)-β cyclodextrin onto derivatized cotton cellulose via thermal and atmospheric plasma techniques. Plasma Chem Plasma Process 31:605–621

    Article  CAS  Google Scholar 

  • Nada AA, James R, Shelke NB, Harmon MD, Awad HM, Nagarale RK, Kumbar SG (2014) A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. Polym Adv Technol 25:507–515

    Article  CAS  Google Scholar 

  • Nimmo CM, Owen SC, Shoichet MS (2011) Diels–Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12:824–830

    Article  PubMed  CAS  Google Scholar 

  • Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res - Part A 77:242–252

    Article  CAS  Google Scholar 

  • Pal K, Singh VK, Anis A, Thakur G, Bhattacharya MK (2013) Hydrogel-based controlled release formulations: designing considerations, characterization techniques and applications. Polym Plast Technol Eng 52:1391–1422

    Article  CAS  Google Scholar 

  • Park S, Okada T, Takeuchi D, Osakada K (2010) Cyclopolymerization and copolymerization of functionalized 1,6-heptadienes catalyzed by pd complexes: Mechanism and application to physical-gel formation. Chem A Eur J 16:8662–8678

    Article  CAS  Google Scholar 

  • Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  PubMed  CAS  Google Scholar 

  • Prabaharan M (2008) Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 23:5–36

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784

    Article  CAS  Google Scholar 

  • Qin X, Lu A, Cai J, Zhang L (2013) Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 92:1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Reis AV, Guilherme MR, Moia TA, Mattoso LHC, Muniz EC, Tambourgi EB (2008) Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. J Polym Sci Part A: Polym Chem 46:2567–2574

    Article  CAS  Google Scholar 

  • Ribeiro MP, Espiga A, Silva D et al (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17:817–824

    Article  PubMed  Google Scholar 

  • Rickett TA, Amoozgar Z, Tuchek CA, Park J, Yeo Y, Shi R (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:57–65

    Article  PubMed  CAS  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  PubMed  CAS  Google Scholar 

  • Ruel-Gariépy E, Leroux JC (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    Article  PubMed  CAS  Google Scholar 

  • Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530

    Article  CAS  Google Scholar 

  • Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials (Basel) 2:353–373

    Article  CAS  Google Scholar 

  • Singh A, Sharma PK, Garg VK, Garg G (2010) Hydrogels: a review. Int J Pharm Sci Rev Res 4:97–105

    Google Scholar 

  • Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  CAS  Google Scholar 

  • Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008a) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Zhou J, Zhang L, Wu X (2008b) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25

    Article  CAS  Google Scholar 

  • Sudheesh Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629

    Article  CAS  Google Scholar 

  • Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  CAS  Google Scholar 

  • Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teng D, Wu Z, Zhang X, Wang Y, Zheng C, Wang Z, Li C (2010) Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer (Guildf) 51:639–646

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  PubMed  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93

    Article  PubMed  CAS  Google Scholar 

  • Van Beek M, Jones L, Sheardown H (2008) Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 29:780–789

    Article  PubMed  CAS  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  CAS  Google Scholar 

  • Vinatier C, Gauthier O, Fatimi A et al (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Wakhet S, Singh VK, Sahoo S et al (2015) Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: a comparative study. J Mater Sci Mater Med 26:118

    Article  PubMed  CAS  Google Scholar 

  • West ER, Xu M, Woodruff TK, Shea LD (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28:4439–4448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Huang Y-A, Zhu Q-J, Ye C (2015) Chitosan in molecularly-imprinted polymers: current and future prospects. Int J Mol Sci 16:18328–18347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  • Zhao L, Weir MD, Xu HHK (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Memb Sci 210:77–90

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L, Deng Q, Wu X (2004) Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J Polym Sci Part A: Polym Chem 42:5911–5920

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang L, Li M, Wu X, Cheng G (2005) Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polym Bull 53:243–248

    Article  CAS  Google Scholar 

  • Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil A. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, N.A., Nada, A.A., Eid, B.M. (2018). Polysaccharide-Based Polymer Gels and Their Potential Applications. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_4

Download citation

Publish with us

Policies and ethics