Skip to main content

Geometry-based Computational Modeling of Calcium Signaling in an Astrocyte

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 65))

Abstract

In the last two decades, astrocytes have gained more interest due to the realization that they are involved not only in information processing and memory formation but are also linked with several neurodegenerative disorders and brain diseases. Communicating indirectly with synapses via released gliotransmitters such as glutamate, astrocytes take part in the neuronal activity by propagating intracellular and intercellular waves of calcium (Ca2+). However, it is not clear what effect does the astrocyte geometry have on these Ca2+ wave dynamics. In this study, we present a geometry-based computational model of an astrocyte that is used to simulate the stimulation and propagation of intracellular astrocytic Ca2+ waves. To our best knowledge, this is the first computational model to study the effect of the single astrocyte geometry on the Ca2+ wave propagation, while taking into account the intricate biological pathways that regulate internal Ca2+ dynamics. By simulating theoretical astrocyte geometries with a fixed glutamate stimulus, we found that narrower astrocyte processes lead to stronger Ca2+ wave dynamics, in comparison to wider processes. From this study, we concluded that the geometry does have a visible effect on the overall intracellular Ca2+ dynamics.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Nedergaard M, Ransom B, Goldman SA., (2003) New Roles for Astrocytes: Redefining the functional Architecture of the Brain. Trends Neurosci 26:523-530

    Google Scholar 

  • 2. Volterra, A., Meldolesi, J., (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6: 626–640

    Google Scholar 

  • 3. Kang, M., Othmer, H.G., (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19: 1–21

    Google Scholar 

  • 4. Mesiti, F., Veletić, M., Floor, P.A., Balasingham, I., (2015) Astrocyte-neuron communication as cascade of equivalent circuits. Nano Commun. Netw. 6:183-197.

    Google Scholar 

  • 5. Dupont, G., Combettes, L., and Leybaert, L., (2007) Calcium dynamics: Spatiotemporal organization from the subcellular to the organ level. Int. Rev. Cytol. 261:193–245.

    Google Scholar 

  • 6. Volman, V., Ben-Jacob, E., Levine, H. (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neur. Comput. 19:303–326

    Google Scholar 

  • 7. Dani, J.W., Chernjavsky, A., Smith, S.J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440

    Google Scholar 

  • 8. Parpura, V. (2004) Glutamate-mediated bi-directional signaling between neurons and astrocytes. Kluwer Academic Publisher, Boston, MA.

    Google Scholar 

  • 9. Pasti, L., Volterra, A., Pozzan, T., Carmignoto, G. (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17:7817–7830

    Google Scholar 

  • 10. Porter, J.T., McCarthy, K.D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16:5073–5081

    Google Scholar 

  • 11. Wang, X., Lou, N., Xu, Q., Tian, G.F., Peng, W.G., Han, X., Kang, J., Takano, T., Nedergaard, M. (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–823

    Google Scholar 

  • 12. Nett, W.J., Oloff, S.H., McCarthy, K.D. (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87:528–537

    Google Scholar 

  • 13. Di Castro, M.A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bouvier, D., Tiret, P., Volterra, A., (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14: 1276–1284

    Google Scholar 

  • 14. Charles, A. (1998) Intercellular calcium waves in glia. Glia 24:39–49

    Google Scholar 

  • 15. Stout, C.E., Costantin, J.L., Naus, C.C.G., Charles, A.C. (2002) Intercellular calcium signaling in astocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277:482–488

    Google Scholar 

  • 16. Evanko, D.S., Sul, J.Y., Zhang, Q., Haydon, P.G. (2004) The regulated release of transmitters from astrocytes. Kluwer Academic Publisher

    Google Scholar 

  • 17. Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G. (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    Google Scholar 

  • 18. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G. (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10:2129–2142

    Google Scholar 

  • 19. Verkhratsky, A., Kettenmann, H. (1996) Calcium signaling in glial cells. Trends Neurosci. 19:346–352

    Google Scholar 

  • 20. De Pittà, M., Volman, V., Levine, H., Pioggia, G., De Rossi, D., Ben-Jacob, E. (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys. Rev. E 77: 030903(R)

    Google Scholar 

  • 21. Oschmann F., Berry H., Obermayer K., Lenk K. (2017) From in silico astrocyte cell models to neuron-astrocyte network models: A review. Brain Res. Bull. S0361-9230(17)30054-0 (in press)

    Google Scholar 

  • 22. De Pittà, M., Goldberg, M., Volman, V., Berry, H., Ben-Jacob, E., (2009) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J. Biol. Phys. 35:383–411

    Google Scholar 

  • 23. Tewari, S., Parpura, V., (2013) A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Front. Comput. Neurosci. 7:145

    Google Scholar 

  • 24. Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105 Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105

    Google Scholar 

  • 25. Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neuro. 1, 683–692

    Google Scholar 

  • 26. Lallouette, J., De Pittà, M., Ben-Jacob, E., Berry, H., (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front. Comput. Neurosci. 8:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Hyttinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Khalid, M.U., Tervonen, A., Korkka, I., Hyttinen, J., Lenk, K. (2018). Geometry-based Computational Modeling of Calcium Signaling in an Astrocyte. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics