Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Over the past century, extensive research has been conducted on interpretation of vibration signals created by the heart and their potential use in noninvasive cardiology. Today, new microelectronics and signal processing technologies have provided unprecedented opportunities to reintroduce some of these techniques as useful cardiovascular assessment tools. The purpose of this book chapter is to review these recent efforts and to study these signals in two categories of local pulses and whole-body signals. The present challenges and opportunities in the field are also investigated.

John Zanetti passed away on November 30th 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starr A, Noordergraaf I (1967) Ballistocardiography in cardiovascular research. Lippincott Company, Philadelphia

    Google Scholar 

  2. Lejeune L, Caiani EG, Prisk GK, Migeotte P (2014) Evaluation of ensemble averaging methods in 3D ballistocardiography. In: IEEE EMBC, pp 5176–5179

    Google Scholar 

  3. Ngai B, Tavakolian K, Akhbardeh A, Blaber AP, Kaminska B, Noordergraaf A (2009) Comparative analysis of seismocardiogram waves with the ultra-low frequency ballistocardiogram. In: IEEE EMBC, vol 2009, pp 2851–2854

    Google Scholar 

  4. Weissler AM, Harris WS, Schoenfeld CD (1968) Systolic time intervals in heart failure in man. Circulation 37(2):149–159

    Article  Google Scholar 

  5. Rijuven (2017). http://www.rijuven.com/ (Online)

  6. 3M (2017). http://www.littmann.ca/ (Online)

  7. Inovise. http://www.inovise.com/ (Online)

  8. Eko (2017). https://ekodevices.com/ (Online)

  9. Acarix. http://www.acarix.com/ (Online)

  10. Dressler W (1937) Pulsations of the wall of the chest. Arch Intern Med 225–239

    Article  Google Scholar 

  11. Droitcour A (2006) Non-contact measurment of heart and respiration rates with a single-chip microwave doppler radar. Stanford University

    Google Scholar 

  12. Schweizer W, Bertrab RV, Reist P (1965) Kinetocardiography in coronary artery disease. Br Heart J 27(2):263–268

    Article  Google Scholar 

  13. Eddleman E (1974) Kinetocardiography. In: Noninvasive cardiology. Gtune & Stratton, New York, pp 227–273

    Google Scholar 

  14. Manolas J (2016) Assessment of diastolic behavior of patients with hypertension vs. other myocardial diseases using an external pressure transducer and short handgrip exercise. J. Hypertens. Manag. 2(1):1–3

    Article  Google Scholar 

  15. Baevskii RM, Egorov AD, Kazarian LA (1964) The method of seismocardiography. Kardiologiia 18:87–89

    Google Scholar 

  16. Salerno D, Zanetti J (1991) Seismocardiography for monitoring changes in left ventricular function during ischemia. Chest 100(4):991–993

    Article  Google Scholar 

  17. Zanetti JM, Tavakolian K (2013) Seismocardiography : past, present and future. In: IEEE engineering in medicine and biology society conference, pp 7004–7007

    Google Scholar 

  18. Castiglioni P, Faini A, Parati G, Di Rienzo M (2007) Wearable seismocardiography. In: IEEE EMBC conference, pp 3954–3957

    Google Scholar 

  19. Tavakolian K (2010) Characterization and analysis of seismocardiogram for estimation of hemodynamic parameters. PhD diss

    Google Scholar 

  20. Tadi MJ, Lehtonen E, Saraste A, Vasankari T, Koivisto T (2016) Gyrocardiography : a new non-invasive approach in the study of mechanical motions of the heart. Concept, method and initial observations. In: IEEE EMBC conference, pp 2034–2037

    Google Scholar 

  21. Gordon JW (1877) Certain molar movements of the human body produced by the circulation of the blood. J Anat Physiol 11:533–536

    Google Scholar 

  22. Starr I, Rawson AJ, Schroeder HA, Joseph NR (1939) Studies on the estimation of cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram. Am J Physiol 127(1):1–28

    Article  Google Scholar 

  23. Noordergraaf A (1956) Physical basis of ballistocardiography. Utrech University

    Google Scholar 

  24. Inan O et al (2015) Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Heal Inform 19(4):1414–1427

    Article  Google Scholar 

  25. Junnila S, Akhbardeh A, Värri A, Koivistoinen T (2005) An EMFi-film sensor based ballistocardiographic chair: performance and cycle extraction method. In: IEEE workshop on signal processing systems (SiPS) design and implementation, vol 2005, pp 373–377

    Google Scholar 

  26. Luna-Lozano PS, Alvarado-Serrano C (2012) Time and amplitude relationships of the ballistocardiogram in vertical and horizontal direction. In: CCE 2012—2012 9th international conference on electrical engineering, computer science automatic control, no September

    Google Scholar 

  27. Chee Y, Han J, Youn J, Park K (2005) Air mattress sensor system with balancing tube for unconstrained measurement of respiration and heart beat movements. Physiol Meas 26(4):413–422

    Article  Google Scholar 

  28. González-Landaeta R, Casas O, Pallàs-Areny R (2008) Heart rate detection from an electronic weighing scale. Physiol Meas 29(8):979–988

    Article  Google Scholar 

  29. Inan OT, Etemadi M, Wiard RM, Giovangrandi L, Kovacs GT (2009) Robust ballistocardiogram acquisition for home monitoring. Physiol Meas 30(2): 169–185

    Article  Google Scholar 

  30. Starr I, Wood FC (1961) Twenty-year studies with the ballistocardiograph the relation between the amplitude of the first record of ‘healthy’. Circulation 23:714–732

    Article  Google Scholar 

  31. Lee WK, Yoon H, Jung DW, Hwang SH, Park KS (2015) Ballistocardiogram of baby during sleep. In: Proceedings of annual international conference IEEE engineering in medicine and biology society (EMBS), vol 2015–Novem, pp 7167–7170

    Google Scholar 

  32. Watanabe K, Watanabe T, Watanabe H, Ando H, Ishikawa T, Kobayashi K (2005) Noninvasive measurement of heartbeat, respiration, snoring and body movements of a subject in bed via a pneumatic method. IEEE Trans Biomed Eng 52(12):2100–2107

    Article  Google Scholar 

  33. Jung DW, Hwang SH, Yoon HN, Lee Y-JG, Jeong D-U, Park KS (2014) Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram. IEEE Trans Biomed Eng 61(1): 131–138

    Google Scholar 

  34. Zhao W, Ni H, Zhou X, Song Y, Wang T (2015) Identifying sleep apnea syndrome using heart rate and breathing effort variation analysis based on ballistocardiography. In: 2015 37th Annual International Conference on IEEE Engineering Medicine and Biology Society, vol 2015, pp 4536–4539

    Google Scholar 

  35. Zink MD et al (2015) Heartbeat cycle length detection by a ballistocardiographic sensor in atrial fibrillation and sinus rhythm. Biomed Res Int 2015:840356

    Google Scholar 

  36. Tavakolian K (2016) Systolic time intervals and new measurement methods. Cardiovasc Eng Technol 7(2):118–125

    Article  Google Scholar 

  37. Eleuteri E et al (2016) Prognostic value of angiopoietin-2 in patients with chronic heart failure. Int J Cardiol 212:364–368

    Article  Google Scholar 

  38. Etemadi M et al (2014) Tracking clinical status for heart failure patients using ballistocardiography and electrocardiography signal features. In: 2014 36th Annual International Conference on IEEE Engineering Medicine and Biology Society, EMBC 2014, vol 94143, pp 5188–5191

    Google Scholar 

  39. Jensen AS et al (2014) Effects of cardiac resynchronization therapy on the first heart sound energy. Comput Cardiol 2014(41):29–32

    Google Scholar 

  40. Marcus FI et al (2007) Accelerometer-derived time intervals during various pacing modes in patients with biventricular pacemakers: comparison with normals. PACE 30(12):1476–1481

    Article  Google Scholar 

  41. Giorgis L et al (2008) Analysis of cardiac micro-acceleration signals for the estimation of systolic and diastolic time intervals in cardiac resynchronization therapy. In: Computing in cardiology, pp 393–396

    Google Scholar 

  42. Donal E et al (2011) Endocardial acceleration (sonR) vs. ultrasound-derived time intervals in recipients of cardiac resynchronization therapy systems. Europace 13(3):402–408

    Article  Google Scholar 

  43. Wilson R, Bamrah V, Lindsay J Diagnostic accuracy of seismocardiography compared with electrocardiography for the anatomic and physiologic diagnosis of coronary artery disease during exercise. Am J 71(August 1989, 1993)

    Google Scholar 

  44. Salerno DM, Zanetti JM, Green LA, Mooney MR, Madison JD, Van Tassel RA (1991) Seismocardiographic changes associated with obstruction of coronary blood flow during balloon angioplasty. Am J Cardiol 68(2): 201–207

    Article  Google Scholar 

  45. Becker M et al (2013) Simplified detection of myocardial ischemia by seismocardiography: differentiation between causes of altered myocardial function. Herz (April): 1–7

    Google Scholar 

  46. Winther S et al (2016) Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. Int J Cardiovasc Imaging 32(2):235–245

    Article  Google Scholar 

  47. Lewis RP, Leighton RF, Forester WF, Weissler AM (1974) Systolic time intervals. In: Noninvasive cardiology. Grune & Stratton, New York, p 300:400

    Google Scholar 

  48. Crow R, Hannan P, Jacobs D, Hedquist L, Salerno D (1994) Relationship between seismocardiogram and echocardiogram for events in the cardiac cycle. Am J Noninvasive Cardiol 8(39):39–46

    Article  Google Scholar 

  49. Tavakolian K, Blaber AP, Ngai B, Kaminska B (2010) Estimation of hemodynamic parameters from seismocardiogram. In: Computing in cardiology, pp 1055–1058

    Google Scholar 

  50. Di Rienzo M, Vaini E, Lombardi P (2015) Use of seismocardiogram for the beat-to-beat assessment of the pulse transit time: a pilot study. In: Proceedings of annual international conference IEEE engineering in medicine and biology society (EMBS), vol 2015–November, pp 7184–7187

    Google Scholar 

  51. Javaid AQ, Fesmire NF, Weitnauer MA, Inan OT (2015) Towards robust estimation of systolic time intervals using head-to-foot and dorso-ventral components of sternal acceleration signals. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks, BSN 2015

    Google Scholar 

  52. Inan OT, Etemadi M, Paloma A, Giovangrandi L, Kovacs GTA (2009) Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph. Physiol Meas 30(3): 261–274

    Article  Google Scholar 

  53. Gomez-Clapers J, Serra-Rocamora A, Casanella R, Pallas-Areny R (2014) Towards the standardization of ballistocardiography systems for J-peak timing measurement. Meas J Int Meas Confed 58:310–316

    Article  Google Scholar 

  54. Gomez-clapers J, Casanella R, Pallas-areny R (2016) Direct pulse transit time measurement from an electronic weighing scale. In: Computing in cardiology, pp 773–776

    Google Scholar 

  55. Wick CA, McClellan JH, Inan OT, Tridandapani S (2015) Seismocardiography-based detection of cardiac quiescence. IEEE Trans Biomed Eng 62(8): 2025–2032

    Article  Google Scholar 

  56. Ashouri H, Orlandic L, Inan OT (2016) Unobtrusive estimation of cardiac contractility and stroke volume changes using ballistocardiogram measurements on a high bandwidth force plate. Sensors (Switzerland), 16(6)

    Article  Google Scholar 

  57. Tavakolian K, Dumont GA, Houlton G, Blaber AP (2014) Precordial vibrations provide noninvasive detection of early-stage hemorrhage. Shock 41(2): 91–96

    Article  Google Scholar 

  58. Mukkamala R et al (2015) Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62(8):1879–1901

    Article  Google Scholar 

  59. Kim CS, Carek AM, Mukkamala R, Inan OT, Hahn JO (2015) Ballistocardiogram as proximal timing reference for pulse transit time measurement: potential for cuffless blood pressure monitoring. IEEE Trans Biomed Eng 62(11):2657–2664

    Article  Google Scholar 

  60. Verma AK, Fazel-rezai R, Blaber A, Tavakolian K (2015) Pulse transit time extraction from seismocardiogram and its relationship with pulse pressure. In: Computing in cardiology, pp 2–5

    Google Scholar 

  61. Ahlström C (2008) Nonlinear phonocardiographic signal processing. Linkoping University

    Google Scholar 

  62. Khosrow-Khavar F, Tavakolian K, Blaber A, Zanetti J, Fazel-Rezai R, Menon C (2014) Automatic annotation of seismocardiogram with high frequency precordial accelerations. IEEE J Biomed Heal Inform. (in Press)

    Google Scholar 

  63. Khosrow-Khavar F, Tavakolin K, Blaber A, Menon C (2016) Automatic and robust delineation of the fiducial points of the seismocardiogram signal for non-invasive estimation of cardiac time intervals. IEEE Trans Biomed Eng

    Google Scholar 

  64. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236

    Article  Google Scholar 

  65. Jang DG, Park SH, Hahn M (2014) Framework for automatic delineation of second derivative of photoplethysmogram: a knowledge-based approach. J Med Biol Eng 34(6):547–553

    Google Scholar 

  66. Pandia K, Inan OT, Kovacs GTA, Giovangrandi L (2012) Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer. Physiol Meas 33(10): 1643–1660

    Article  Google Scholar 

  67. Khosrow-khavar F et al (2015) Automatic annotation of seismocardiogram with high frequency precordial accelerations. IEEE J Biomed Heal Inform 19(4):1428–1434

    Article  Google Scholar 

  68. Shin JH, Choi BH, Lim YG, Jeong DU, Park KS (2008) Automatic ballistocardiogram (BCG) beat detection using a template matching approach. In: Conference proceedings of IEEE engineering medicine and biology society, vol 2008, no c, pp 1144–1146

    Google Scholar 

  69. Akhbardeh A, Kaminska B, Tavakolian K (2007) BSeg++: a modified blind segmentation method for ballistocardiogram cycle extraction. In: IEEE EMBC, vol 2007, pp 1896–1899

    Google Scholar 

  70. Gomez-clapers J, Casanella R, Pallas-areny R (2016) A novel algorithm for fast BCG cycle extraction in ambulatory scenarios. In: Computing in cardiology, pp 357–360

    Google Scholar 

  71. Xu W, Sandham WA, Fisherm AC, Conway M (1996) Wavelet transform analysis of the seismocardiogram. In: Proceedings of IEEE-SP international symposium on time-frequency time-scale analysis, pp 481–484

    Google Scholar 

  72. Postolache O, Girao PS, Postolache G, Pereira M (2007) Vital signs monitoring system based on EMFi sensors and wavelet analysis. In: 2007 IEEE instrumentation & measurement technology conference IMTC 2007, pp 1–4

    Google Scholar 

  73. Gilaberte S, Gómez-Clapers J, Casanella R, Pallas-Areny R (2010) Heart and respiratory rate detection on a bathroom scale based on the ballistocardiogram and the continuous wavelet transform. In: 2010 Annual international conference on IEEE engineering and medicine biology society EMBC’10, pp 2557–2560

    Google Scholar 

  74. Alvarado-Serrano C, Luna-Lozano PS, Pallàs-Areny R (2016) An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform. Biomed Signal Process Control 27(May):96–102

    Article  Google Scholar 

  75. Bruser C, Stadlthanner K, Brauers A, Leonhardt S (2010) Applying machine learning to detect individual heart beats in ballistocardiograms. In: Conference proceedings of IEEE engineering and medicine biology society, vol 2010, pp 1926–1929

    Google Scholar 

  76. Bruser C, Stadlthanner K, de Waele S, Leonhardt S (2011) Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans Inf Technol Biomed 15(5):778–786

    Article  Google Scholar 

  77. Brueser C, Winter S, Leonhardt S (2013) Robust inter-beat interval estimation in cardiac vibration signals. Physiol Meas 34(2):123–138

    Article  Google Scholar 

  78. Paalasmaa J, Toivonen H, Partinen M (2015) Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms. IEEE J Biomed Heal Inform 19(6):1945–1952

    Article  Google Scholar 

  79. Jafari Tadi M et al (2016) A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms. Physiol Meas 37(11): 1885–1909

    Article  Google Scholar 

  80. De Ridder S, Migeotte PF, Neyt X, Pattyn N, Prisk GK (2011) Three-dimensional ballistocardiography in microgravity: a review of past research. In: Proceedings of annual international conference IEEE engineering in medicine and biology society (EMBS), pp 4267–4270

    Google Scholar 

  81. Kim C-S et al (2016) Ballistocardiogram: mechanism and potential for unobtrusive cardiovascular health monitoring. Sci Rep 6:1–6

    Article  Google Scholar 

  82. Casanella R, Gomez-clapers J, Hernandez-urrea M, Pallas-areny R (2016) Impact of the mechanical interface on BCG signals obtained from electronic weighing scales. In: Computing in cardiology, pp 285–288

    Google Scholar 

  83. Da He D, Winokur ES, Sodini CG (2011) A continuous, wearable, and wireless heart monitor using head ballistocardiogram (BCG) and head electrocardiogram (ECG). In: Proceedings of annual international conference IEEE engineering in medicine and biology society (EMBS), pp 4729–4732

    Google Scholar 

  84. Javaid AQ, Wiens AD, Fesmire NF, Weitnauer MA, Inan OT (2015) Quantifying and reducing posture-dependent distortion in ballistocardiogram measurements. IEEE J Biomed Heal Inform 19(5):1549–1556

    Article  Google Scholar 

  85. Wiens A, Etemadi M, Klein L, Roy S, Inan OT (2014) Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces. In: 2014 36th Annual international conference IEEE engineering in medicine and biology society EMBS, 2014, vol 94143, pp 5172–5175

    Google Scholar 

  86. Wiens A, Etemadi M, Roy S, Klein L, Inan O (2014) Towards continuous, non-invasive assessment of ventricular function and hemodynamics: wearable ballistocardiography. IEEE J Biomed Heal Inform. PP(99): 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhyar Tavakolian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casanella, R., Khosrow-khavar, F., Schmidt, S., Zanetti, J., Tavakolian, K. (2019). Cardiac Mechanical Signals. In: Golemati, S., Nikita, K. (eds) Cardiovascular Computing—Methodologies and Clinical Applications. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5092-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5092-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5091-6

  • Online ISBN: 978-981-10-5092-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics