Skip to main content

Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

  • Chapter
  • First Online:
Book cover Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12. doi:10.1007/s00253-009-2196-0

    Article  CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 21(5):639–644

    Article  Google Scholar 

  • Azcon R, Barea J, Hayman D (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria. Soil Biol Biochem 8(2):135–138

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J et al (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131(3):1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, pp 195–212

    Chapter  Google Scholar 

  • Barea J, Toro M, Azcón R (2007) The use of 32P isotopic dilution techniques to evaluate the interactive effects of phosphate-solubilizing bacteria and mycorrhizal fungi at increasing plant P availability. In: Velazquez E, Rodriguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, vol 102. Springer, Dordrecht, pp 223–227

    Chapter  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49(4):465–479. doi:10.1007/s00374-012-0737-7

    Article  CAS  Google Scholar 

  • Bieleski R (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24(1):225–252

    Article  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Article  PubMed  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6(2):242–245

    Article  PubMed  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Brunner I, Goren A, Schlumpf A (2014) Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources. Environ Res Lett 9(2):025002

    Article  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D et al (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nut Soil Sci/Z Pflanzenernähr Bodenkd 174(1):3

    Article  CAS  Google Scholar 

  • Chen XW, Wu FY, Li H et al (2013) Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environ Exp Bot 87:92–99. doi:http://dx.doi.org/10.1016/j.envexpbot.2012.08.002

  • Chiou T-J, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25(3):281–293. doi:10.1046/j.1365-313x.2001.00963.x

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, White S (2015) Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Sec 7(2):337–350

    Article  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC, Boca Raton, pp 173–200

    Chapter  Google Scholar 

  • Deveau A, Palin B, Delaruelle C et al (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175(4):743–755

    Article  CAS  PubMed  Google Scholar 

  • Downie JA (2014) Legume nodulation. Curr Biol 24(5):R184–R190

    Article  CAS  PubMed  Google Scholar 

  • Duca M (2015) Mineral nutrition of plants. In: Mohr H, Schopfer P (eds) Plant physiology. Springer, Berlin, pp 149–185

    Chapter  Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann Sci For 3:239–251

    Article  Google Scholar 

  • Eivazi F, Tabatabai M (1977) Phosphatases in soils. Soil Biol Biochem 9(3):167–172

    Article  CAS  Google Scholar 

  • Filius JD, Hiemstra T, Van Riemsdijk WH (1997) Adsorption of small weak organic acids on goethite: modeling of mechanisms. J Colloid Interface Sci 195(2):368–380

    Article  CAS  PubMed  Google Scholar 

  • Gao LL, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol 151(2):477–491. doi:10.1046/j.0028-646x.2001.00193.x

    Article  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15(4):438–443

    Article  PubMed  Google Scholar 

  • Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Can J Bot 85(7):644–651. doi:10.1139/B07-070

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Cham

    Book  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Grierson P, Comerford N, Jokela E (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spodosol. Soil Biol Biochem 30(10):1323–1331

    Article  CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83

    Article  Google Scholar 

  • Hodge A, Helgason T, Fitter A (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3(4):267–273

    Article  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104(2):657–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action, vol 26. Springer, Berlin, pp 169–198

    Chapter  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact 19(10):1121–1126. doi:10.1094/MPMI-19-1121

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56(1):73–98

    Article  CAS  Google Scholar 

  • Khan M, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-37241-4_10

    Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, Cham, pp 31–62. doi:10.1007/978-3-319-08216-5_2

    Google Scholar 

  • Kim K, Jordan D, McDonald G (1997) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26(2):79–87

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald G (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30(8):995–1003

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35(3):480–487

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98(4):693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Leprince F, Quiquampoix H (1996) Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum. Eur J Soil Sci 47(4):511–522. doi:10.1111/j.1365-2389.1996.tb01851.x

    Article  CAS  Google Scholar 

  • Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21:59–66

    Article  CAS  PubMed  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1(4):321–330

    CAS  PubMed  Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85(2):315–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Maougal R, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon J-J (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Mardad I, Serrano A, Soukri A (2013) Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. Afr J Microbiol Res 7:626–635

    CAS  Google Scholar 

  • Marques JM, da Silva TF, Vollu RE et al (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88(2):424–435. doi:10.1111/1574-6941.12313

    Article  CAS  PubMed  Google Scholar 

  • Medveczky N, Rosenberg H (1971) Phosphate transport in Escherichia coli. Biochim Biophys Acta Biomembr 241(2):494–506

    Article  CAS  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M et al (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46(2):169–174

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action, vol 26. Springer, Heidelberg, pp 215–243

    Chapter  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270

    Article  CAS  PubMed  Google Scholar 

  • Naves LP, Corrêa A, Bertechini A, Gomide E, Cd S (2012) Effect of pH and temperature on the activity of phytase products used in broiler nutrition. Rev Bras Ciências Avícola 14:181–185

    Article  Google Scholar 

  • Nesme T, Colomb B, Hinsinger P, Watson CA (2014) Soil phosphorus management in organic cropping systems: from current practices to avenues for a more efficient use of P resources. In: Bellon S, Penvern S (eds) Organic farming, prototype for sustainable agriculture. Springer, Dordrecht, pp 23–45

    Chapter  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC, Boca Ratoon, pp 23–72

    Chapter  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agron Sci Prod Veg Environ 23(5–6):375–396

    CAS  Google Scholar 

  • Oberson A, Joner EJ, Turner B, Frossard E, Baldwin D (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI publishers, Wallingford, pp 133–164

    Chapter  Google Scholar 

  • Osman KT (2012) Soils: principles, properties and management. Springer Science & Business Media, Chittagong

    Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49(2):222–228

    Article  PubMed  Google Scholar 

  • Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166(4):1713–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233(4767):977–980

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17(362):e370

    Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Article  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea J (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136(4):667–677

    Article  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena J, Jha A (2014) Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants. Clean Soil Air Water 42(9):1248–1252

    Article  CAS  Google Scholar 

  • Scervino JM, Papinutti VL, Godoy MS et al (2011) Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J Appl Microbiol 110(5):1215–1223. doi:10.1111/j.1365-2672.2011.04972.x

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4(11):1312–1316

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1):3–20. doi:10.1007/s11104-009-9981-5

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36(5):909–919

    Article  CAS  PubMed  Google Scholar 

  • Suri V, Choudhary AK, Chander G, Verma T, Gupta M, Dutt N (2011) Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Commun Soil Sci Plant Anal 42(18):2265–2273

    Article  CAS  Google Scholar 

  • Tian J, Wang X, Tong Y, Chen X, Liao H (2012) Bioengineering and management for efficient phosphorus utilization in crops and pastures. Curr Opin Biotechnol 23 (6):866–871. doi:http://dx.doi.org/10.1016/j.copbio.2012.03.002

  • Turner BL, McKelvie ID, Haygarth PM (2002) Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34(1):27–35

    Article  CAS  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, pp 1–21

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi:10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Vuuren DP, Bouwman A, Beusen A (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20(3):428–439

    Article  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448

    Article  PubMed  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115

    Article  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. doi:10.1186/1471-2180-9-174

    Article  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. VCH, Weinheim, pp p1–18

    Google Scholar 

  • Wu S, Cao Z, Li Z, Cheung K, Wong M (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1):155–166

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yarzábal L (2010) Agricultural development in tropical acidic soils: potential and limits of phosphate-solubilizing bacteria. In: Dion P (ed) Soil biology and agriculture in the tropics, Soil biology, vol 21. Springer, Berlin/Heidelberg, pp 209–233. doi:10.1007/978-3-642-05076-3_10

    Chapter  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24(7):1059–1065. doi:10.1007/s11274-007-9575-4

    Article  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225(4):1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agri Forest 30(3):223–230

    CAS  Google Scholar 

  • Zarei M, Saleh-Rastin N, Alikhani HA, Aliasgharzadeh N (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29(8):1509–1522

    Article  CAS  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014a) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zhang Z, Liao H, Lucas WJ (2014b) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56(3):192–220

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210(3):1022–1032. doi:10.1111/nph.13838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank KAUST for their financial support, Florian Mette for his highly useful comments, the members of the Center for Desert Agriculture, and the Hirt’s lab group members for their support and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heribert Hirt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Eida, A.A., Hirt, H., Saad, M.M. (2017). Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_6

Download citation

Publish with us

Policies and ethics