Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 546 Accesses

Abstract

A combined ion-mobility mass spectrometry (IM-MS) and DFT study has been carried out to investigate Pd/MPAA(mono-N-protected amino acid)-catalyzed direct asymmetric C–H activation reactions of several prochiral substrates. The IM-MS experiments reveal that the activation of C–H bond can be achieved in PdII(MPAA)(substrate) complex which supports that the N-protecting group acts as proton acceptor. DFT studies lead to the establishment of a chirality relay model which successfully explains the enantioselectivity for all the relevant reactions studied. The enantioselectivity originates from the rigidity of the bidentate MPAA and rigid coordination of the substrate. The effect of bulkiness of the N-protecting group on enantioselectivity is also discussed.

The results presented in this chapter have been published in the following article:

Cheng, G.-J.; P.; Chen, P.; Sun, T.-Y.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D. Chem. Eur. J. 2015, 21, 11180.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180

    Article  Google Scholar 

  2. Godula K, Sames D (2006) Science 312:67

    Article  CAS  Google Scholar 

  3. Bergman RG (2007) Nature 446:391

    Article  CAS  Google Scholar 

  4. Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Angew Chem Int Ed 48:5094

    Article  CAS  Google Scholar 

  5. Daugulis O, Do H-Q, Shabashov D (2009) Acc Chem Res 42:1074

    Google Scholar 

  6. Lyons TW, Sanford MS (2010) Chem Rev 110:1147

    Article  CAS  Google Scholar 

  7. Yeung CS, Dong VM (2011) Chem Rev 111:1215

    Article  CAS  Google Scholar 

  8. Davies HML, Du Bois J, Yu J-Q (2011) Chem Soc Rev 40:1855

    Google Scholar 

  9. Engle KM, Mei T-S, Wasa M, Yu J-Q (2011) Acc Chem Res 45:788

    Article  Google Scholar 

  10. Colby DA, Tsai AS, Bergman RG, Ellman JA (2011) Acc Chem Res 45:814

    Article  Google Scholar 

  11. Doyle MP, Goldberg KI (2012) Acc Chem Res 45:777

    Article  CAS  Google Scholar 

  12. Neufeldt SR, Sanford MS (2012) Acc Chem Res 45:936

    Article  CAS  Google Scholar 

  13. Wencel-Delord J, Droge T, Liu F, Glorius F (2011) Chem Soc Rev 40:4740

    Article  CAS  Google Scholar 

  14. Arockiam PB, Bruneau C, Dixneuf PH (2012) Chem Rev 112:5879

    Article  CAS  Google Scholar 

  15. Rouquet G, Chatani N (2013) Angew Chem Int Ed 52:11726

    Article  CAS  Google Scholar 

  16. He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J-Q (2014) Science 343:1216

    Article  CAS  Google Scholar 

  17. Giri R, Shi B-F, Engle KM, Maugel N, Yu J-Q (2009) Chem Soc Rev 38:3242

    Article  CAS  Google Scholar 

  18. Zheng C, You S-L (2014) RSC Advances 4:6173

    Article  CAS  Google Scholar 

  19. Wencel-Delord J, Colobert F (2013) Chem Eur J 19:14010

    Article  CAS  Google Scholar 

  20. Yang L, Huang H (2012) Catal Sci Technol 2:1099

    Google Scholar 

  21. Engle KM, Thuy-Boun PS, Dang M, Yu J-Q (2011) J Am Chem Soc 133:18183

    Article  CAS  Google Scholar 

  22. Engle KM, Yu J-Q (2013) J Org Chem 78:8927

    Article  CAS  Google Scholar 

  23. ChanKelvin SL, Wasa M, Chu L, Laforteza BN, Miura M, Yu J-Q (2014) Nat Chem 6:146

    Article  CAS  Google Scholar 

  24. Shi B-F, Zhang Y-H, Lam JK, Wang D-H, Yu J-Q (2009) J Am Chem Soc 132:460

    Article  Google Scholar 

  25. Gao D-W, Shi Y-C, Gu Q, Zhao Z-L, You S-L (2012) J Am Chem Soc 135:86

    Article  Google Scholar 

  26. Cheng X-F, Li Y, Su Y-M, Yin F, Wang J-Y, Sheng J, Vora HU, Wang X-S, Yu J-Q (2013) J Am Chem Soc 135:1236

    Article  CAS  Google Scholar 

  27. Chu L, Wang X-C, Moore CE, Rheingold AL, Yu J-Q (2013) J Am Chem Soc 135:16344

    Article  CAS  Google Scholar 

  28. Pi C, Li Y, Cui X, Zhang H, Han Y, Wu Y (2013) Chem. Sci. 4:2675

    Article  CAS  Google Scholar 

  29. Peng HM, Dai L-X, You S-L (2010) Angew Chem Int Ed 49:5826

    Article  CAS  Google Scholar 

  30. Shi Y-C, Yang R-F, Gao D-W, You S-L (1891) Beilstein J Org Chem 2013:9

    Google Scholar 

  31. Xiao K-J, Chu L, Chen G, Yu J-Q (2016) J Am Chem Soc

    Google Scholar 

  32. Xiao K-J, Chu L, Yu J-Q (2016) Angew Chem Int Ed 55:2856

    Article  CAS  Google Scholar 

  33. Du Z-J, Guan J, Wu G-J, Xu P, Gao L-X, Han F-S (2015) J Am Chem Soc 137:632

    Article  CAS  Google Scholar 

  34. Evans DA, Michael FE, Tedrow JS, Campos KR (2003) J Am Chem Soc 125:3534

    Article  CAS  Google Scholar 

  35. Shi B-F, Maugel N, Zhang Y-H, Yu J-Q (2008) Angew Chem Int Ed 47:4882

    Article  CAS  Google Scholar 

  36. Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J-Q (2011) J Am Chem Soc 133:19598

    Article  CAS  Google Scholar 

  37. Chu L, Xiao K-J, Yu J-Q (2014) Science 346:451

    Article  CAS  Google Scholar 

  38. Chan KSL, Fu H-Y, Yu J-Q (2015) J Am Chem Soc 137:2042

    Article  CAS  Google Scholar 

  39. Lapointe D, Fagnou K (2010) Chem Lett 39:1118

    Article  Google Scholar 

  40. Biswas B, Sugimoto M, Sakaki S (2000) Organometallics 19:3895

    Article  CAS  Google Scholar 

  41. Powers DC, Geibel MAL, Klein JEMN, Ritter T (2009) J Am Chem Soc 131:17050

    Article  CAS  Google Scholar 

  42. Powers DC, Ritter T (2009) Nat Chem 1:302

    Article  CAS  Google Scholar 

  43. Davies DL, Donald SMA, Macgregor SA (2005) J Am Chem Soc 127:13754

    Article  CAS  Google Scholar 

  44. Tunge JA, Foresee LN (2005) Organometallics 24:6440

    Article  CAS  Google Scholar 

  45. Ryabov AD, Sakodinskaya IK, Yatsimirsky AK (1991) J Organomet Chem 406:309

    Article  CAS  Google Scholar 

  46. Labinger JA, Bercaw JE (2002) Nature 417:507

    Article  CAS  Google Scholar 

  47. García-Cuadrado D, Braga AAC, Maseras F, Echavarren AM (1066) J Am Chem Soc 2006:128

    Google Scholar 

  48. Lafrance M, Fagnou K (2006) J Am Chem Soc 128:16496

    Article  CAS  Google Scholar 

  49. Baxter RD, Sale D, Engle KM, Yu J-Q, Blackmond DG (2012) J Am Chem Soc 134:4600

    Article  CAS  Google Scholar 

  50. Musaev DG, Kaledin A, Shi B-F, Yu J-Q (2011) J Am Chem Soc 134:1690

    Article  Google Scholar 

  51. After we published the first paper (Ref. 52) about the model in which MPAA acts as base for C–H activation (model D) and during the manuscript preparation of the present work, the Musaeve group applied the same model (model D) to reaction 1 in their review (Chem. Soc. Rev. 2014, 43, 5009)

    Google Scholar 

  52. Cheng G-J, Yang Y-F, Liu P, Chen P, Sun T-Y, Li G, Zhang X, Houk KN, Yu J-Q, Wu Y-D (2014) J Am Chem Soc 136:894

    Article  CAS  Google Scholar 

  53. The present work studied reactions 1–8. Reaction 1.18 and 1.19 in Chapter 1 were not published when this work finished. But the chirality relay model can also be applied to Pd/MPAA catalyzed kinetic resolution reactions 1.18 and 1.19

    Google Scholar 

  54. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) Int J Mass Spectrom 261:1

    Article  CAS  Google Scholar 

  55. Knapman TW, Valette NM, Warriner SL, Ashcroft AE (2013) Curr Anal Chem 9:181

    CAS  Google Scholar 

  56. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Anal Chem 82:9557

    Article  CAS  Google Scholar 

  57. Ruotolo BT, Benesch JLP, Sandercock AM, Hyung S-J, Robinson CV (2008) Nat Protoc 3:1139

    Article  CAS  Google Scholar 

  58. http://www.indiana.edu/~nano/software.html

  59. Wyttenbach T, von Helden G, Batka JJ Jr, Carlat D, Bowers MT (1997) J Am Soc Mass Spectrom 8:275

    Google Scholar 

  60. Shvartsburg AA, Jarrold MF (1996) Chem Phys Lett 261:86

    Article  CAS  Google Scholar 

  61. Shvartsburg AA, Schatz GC, Jarrold MF (1998) J Chem Phys 108:2416

    Article  CAS  Google Scholar 

  62. Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford

    Google Scholar 

  63. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  64. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  65. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  66. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  67. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  68. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029

    Google Scholar 

  69. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  70. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  71. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  72. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Article  CAS  Google Scholar 

  73. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  74. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  75. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  76. Legault CY (2009) CYLView, 1.0b. Université de Sherbrooke, Canada. http://www.cylview.org

  77. We also used other amino acid ligands in MS study. We decided to present the MS results with N-Ac-Alanine because it is the simplest MPAA ligand without complex side chain and the acetyl group will not be fragmentated in CID experiment. Other MPAA ligands may lead to complicated spectra due to the fragmentation of side chain and/or the N-protecting group. The interested reader could refer to the supporting information of ref. 96 for the MS study with N-Boc-Valine ligand

    Google Scholar 

  78. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) J Mass Spectrom 43:1

    Article  CAS  Google Scholar 

  79. Harvey SR, MacPhee CE, Barran PE (2011) Methods 54:454

    Article  CAS  Google Scholar 

  80. Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) Nat Chem 6:281

    Article  CAS  Google Scholar 

  81. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Annu Rev Anal Chem 1:293

    Article  CAS  Google Scholar 

  82. Jurneczko E, Barran PE (2011) Analyst 136:20

    Article  CAS  Google Scholar 

  83. McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Int J Mass Spectrom 240:301

    Article  CAS  Google Scholar 

  84. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Nature 510:172

    Article  CAS  Google Scholar 

  85. Ducháčková L, Roithová J, Milko P, Žabka J, Tsierkezos N, Schröder D (2010) Inorg Chem 50:771

    Article  Google Scholar 

  86. Révész Á, Schröder D, Rokob TA, Havlík M, Dolenský B (2011) Angew Chem Int Ed 50:2401

    Article  Google Scholar 

  87. Revesz A, Schroder D, Rokob TA, Havlik M, Dolensky B (2012) Phys Chem Chem Phys 14:6987

    Article  CAS  Google Scholar 

  88. Schröder D, Buděšínský M, Roithová J (2012) J Am Chem Soc 134:15897

    Google Scholar 

  89. Shaffer CJ, Schröder D, Gütz C, Lützen A (2012) Angew Chem Int Ed 51:8097

    Article  CAS  Google Scholar 

  90. Tsybizova A, Rulíšek L, Schröder D, Rokob TA (2012) J Phys Chem A 117:1171

    Article  Google Scholar 

  91. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) J Phys Chem 100:16082

    Article  CAS  Google Scholar 

  92. Theoretical CCSs were calculated employing the open source program, MOBCAL, with trajectory method

    Google Scholar 

  93. KOAc was applied in synthesis experiment

    Google Scholar 

  94. Evans DA, Campos KR, Tedrow JS, Michael FE, Gagné MR (2000) J Am Chem Soc 122:7905

    Article  CAS  Google Scholar 

  95. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187

    Article  CAS  Google Scholar 

  96. Cheng G-J, Chen P, Sun T-Y, Zhang X, Yu J-Q, Wu Y-D (2015) Chem Eur J 21:11180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Juan Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cheng, GJ. (2017). Mechanistic Studies on Pd(MPAA)-Catalyzed Enantioselective C–H Activation Reactions. In: Mechanistic Studies on Transition Metal-Catalyzed C–H Activation Reactions Using Combined Mass Spectrometry and Theoretical Methods. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4521-9_4

Download citation

Publish with us

Policies and ethics