Skip to main content

Roles of Runx2 in Skeletal Development

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

Runx2 is the most upstream transcription factor essential for osteoblast differentiation. It regulates the expression of Sp7, the protein of which is a crucial transcription factor for osteoblast differentiation, as well as that of bone matrix genes including Spp1, Ibsp, and Bglap2. Runx2 is also required for chondrocyte maturation, and Runx3 has a redundant function with Runx2 in chondrocyte maturation. Runx2 regulates the expression of Col10a1, Spp1, Ibsp, and Mmp13 in chondrocytes. It also inhibits chondrocytes from acquiring the phenotypes of permanent cartilage chondrocytes. It regulates chondrocyte proliferation through the regulation of Ihh expression. Runx2 enhances osteoclastogenesis by regulating Rankl. Cbfb, which is a co-transcription factor for Runx family proteins, plays an important role in skeletal development by stabilizing Runx family proteins. In Cbfb isoforms, Cbfb1 is more potent than Cbfb2 in Runx2-dependent transcriptional regulation; however, the expression level of Cbfb2 is three-fold higher than that of Cbfb1, demonstrating the requirement of Cbfb2 in skeletal development. The expression of Runx2 in osteoblasts is regulated by a 343-bp enhancer located upstream of the P1 promoter. This enhancer is activated by an enhanceosome composed of Dlx5/6, Mef2, Tcf7, Ctnnb1, Sox5/6, Smad1, and Sp7. Thus, Runx2 is a multifunctional transcription factor that is essential for skeletal development, and Cbfb regulates skeletal development by modulating the stability and transcriptional activity of Runx family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhami, M. D., Rashid, H., Chen, H., Clarke, J. C., Yang, Y., & Javed, A. (2015). Loss of Runx2 in committed osteoblasts impairs postnatal skeletogenesis. Journal of Bone and Mineral Research, 30(1), 71–82. doi:10.1002/jbmr.2321.

  • Aubin, J., & Triffitt, J. (2002). Mesenchymal stem cells and osteoblast differentiation. In J. P. Bilezikian, L. G. Raisz, & G. A. Rodan (Eds.), Principles of bone biology. New York: Academic Press.

    Google Scholar 

  • Banerjee, C., McCabe, L. R., Choi, J. Y., Hiebert, S. W., Stein, J. L., Stein, G. S., & Lian, J. B. (1997). Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. Journal of Cellular Biochemistry, 66(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., & Groner, Y. (2015). Loss of osteoblast Runx3 produces severe congenital osteopenia. Molecular and Cellular Biology, 35(7), 1097–1109. doi:10.1128/mcb.01106-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Ma, J., Zhu, G., Jules, J., Wu, M., McConnell, M., et al. (2014). Cbfβ deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfβ required for skeletal development. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8482–8487. doi:10.1073/pnas.1310617111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89(5), 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto, H., Enomoto-Iwamoto, M., Iwamoto, M., Nomura, S., Himeno, M., Kitamura, Y., et al. (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. The Journal of Biological Chemistry, 275(12), 8695–8702.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto, H., Shiojiri, S., Hoshi, K., Furuichi, T., Fukuyama, R., Yoshida, C. A., Kanatani, N., Nakamura, R., Mizuno, A., Zanma, A., Yano, K., Yasuda, H., Higashio, K., Takada, K., Komori, T. (2003). Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2−/− mice by RANKL transgene. The Journal of Biological Chemistry, 278(26), 23971–23977. doi:10.1074/jbc.M302457200 M302457200 [pii].

    Google Scholar 

  • Fei, T., Mengrui, W., Lianfu, D., Guochun, Z., Junqing, M., Bo, G., et al. (2014). Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation. Journal of Bone and Mineral Research, 29(7), 1564–1574. doi:10.1002/jbmr.2275.

    Article  Google Scholar 

  • Fujiwara, M., Tagashira, S., Harada, H., Ogawa, S., Katsumata, T., Nakatsuka, M., Komori, T., Takada, H. (1999). Isolation and characterization of the distal promoter region of mouse Cbfa1. Biochimica et Biophysica Acta, 1446(3), 265–272. doi:S0167–4781(99)00113-X [pii].

    Google Scholar 

  • Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., et al. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. The Journal of Biological Chemistry, 280(39), 33132–33140. doi:10.1074/jbc.M500608200.

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., & Matthias, P. (2002). High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Molecular and Cellular Biology, 22(17), 6222–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., et al. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. The Journal of Biological Chemistry, 274(11), 6972–6978.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M. Q., Tare, R., Lee, S. H., Mandeville, M., Weiner, B., Montecino, M., et al. (2007). HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Molecular and Cellular Biology, 27(9), 3337–3352. doi:10.1128/mcb.01544-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess, J., Porte, D., Munz, C., & Angel, P. (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. The Journal of Biological Chemistry, 276(23), 20029–20038. doi:10.1074/jbc.M010601200.

    Article  CAS  PubMed  Google Scholar 

  • Himeno, M., Enomoto, H., Liu, W., Ishizeki, K., Nomura, S., Kitamura, Y., & Komori, T. (2002). Impaired vascular invasion of Cbfa1-deficient cartilage engrafted in the spleen. Journal of Bone and Mineral Research, 17(7), 1297–1305. doi:10.1359/jbmr.2002.17.7.1297.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. F., Fukai, N., Selby, P. B., Olsen, B. R., & Mundlos, S. (1997). Mouse clavicular development: Analysis of wild-type and cleidocranial dysplasia mutant mice. Developmental Dynamics, 210(1), 33–40. doi:10.1002/(sici)1097-0177(199709)210:1<33::aid-aja4>3.0.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  • Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., et al. (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Developmental Dynamics, 214(4), 279–290. doi:10.1002/(sici)1097-0177(199904)214:4<279::aid-aja1>3.0.co;2-w.

    Article  CAS  PubMed  Google Scholar 

  • Javed, A., Barnes, G. L., Jasanya, B. O., Stein, J. L., Gerstenfeld, L., Lian, J. B., & Stein, G. S. (2001). runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Molecular and Cell Biology, 21(8), 2891–2905 (0270-7306 (Print)).

    Article  CAS  Google Scholar 

  • Jiang, Q., Qin, X., Kawane, T., Komori, H., Matsuo, Y., Taniuchi, I., et al. (2016). Cbfb2 isoform dominates more potent Cbfb1 and is required for skeletal development. Journal of Bone and Mineral Research. doi:10.1002/jbmr.2814.

    Google Scholar 

  • Jimenez, M. J., Balbin, M., Lopez, J. M., Alvarez, J., Komori, T., & Lopez-Otin, C. (1999). Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Molecular and Cellular Biology, 19(6), 4431–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamekura, S., Kawasaki, Y., Hoshi, K., Shimoaka, T., Chikuda, H., Maruyama, Z., et al. (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis and Rheumatism, 54(8), 2462–2470. doi:10.1002/art.22041.

    Article  CAS  PubMed  Google Scholar 

  • Kanatani, N., Fujita, T., Fukuyama, R., Liu, W., Yoshida, C. A., Moriishi, T., Yamana, K., Miyazaki, T., Toyosawa, S., Komori, T. (2006). Cbfβ regulates Runx2 function isoform-dependently in postnatal bone development. Developmental Biology, 296(1), 48–61. doi:S0012–1606(06)00242–9 [pii]10.1016/j.ydbio.2006.03.039.

    Google Scholar 

  • Kawane, T., Komori, H., Liu, W., Moriishi, T., Miyazaki, T., Mori, M., et al. (2014). Dlx5 and Mef2 regulate a novel Runx2 enhancer for osteoblast-specific expression. Journal of Bone and Mineral Research, 29(9), 1960–1969. doi:10.1002/jbmr.2240.

    Article  CAS  PubMed  Google Scholar 

  • Kern, B., Shen, J., Starbuck, M., & Karsenty, G. (2001). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. The Journal of Biological Chemistry, 276(10), 7101–7107. doi:10.1074/jbc.M006215200.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, A., Inose, H., Yano, F., Fujita, K., Ikeda, T., Sato, S., et al. (2010). Runx1 and Runx2 cooperate during sternal morphogenesis. Development, 137(7), 1159–1167. doi:10.1242/dev.045005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori, T. (2000). A fundamental transcription factor for bone and cartilage. Biochemical and Biophysical Research Communications, 276(3), 813–816. doi:10.1006/bbrc.2000.3460S0006-291X(00)93460–0 [pii].

    Google Scholar 

  • Komori, T. (2005). Regulation of skeletal development by the Runx family of transcription factors. Journal of Cellular Biochemistry, 95(3), 445–453. doi:10.1002/jcb.20420.

    Article  CAS  PubMed  Google Scholar 

  • Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry, 99(5), 1233–1239. doi:10.1002/jcb.20958.

    Article  CAS  PubMed  Google Scholar 

  • Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., Kishimoto, T. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764. doi:S0092–8674(00)80258–5 [pii].

    Google Scholar 

  • Kundu, M., Javed, A., Jeon, J. P., Horner, A., Shum, L., Eckhaus, M., et al. (2002). Cbfβ interacts with Runx2 and has a critical role in bone development. Nature Genetics, 32(4), 639–644. doi:10.1038/ng1050.

    Article  CAS  PubMed  Google Scholar 

  • Lamour, V., Detry, C., Sanchez, C., Henrotin, Y., Castronovo, V., & Bellahcene, A. (2007). Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. The Journal of Biological Chemistry, 282(50), 36240–36249. doi:10.1074/jbc.M705833200.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., et al. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20(23), 8783–8792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. H., Kim, Y. J., Yoon, W. J., Kim, J. I., Kim, B. G., Hwang, Y. S., et al. (2005). Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. The Journal of Biological Chemistry, 280(42), 35579–35587. doi:10.1074/jbc.M502267200.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Che, X., Jeong, J. H., Choi, J. Y., Lee, Y. J., Lee, Y. H., et al. (2012). Runx2 protein stabilizes hypoxia-inducible factor-1alpha through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. The Journal of Biological Chemistry, 287(18), 14760–14771. doi:10.1074/jbc.M112.340232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengner, C. J., Drissi, H., Choi, J. Y., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2002). Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mechanisms of Development, 114(1–2), 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Lu, Y., Ding, M., Napierala, D., Abbassi, S., Chen, Y., et al. (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. Journal of Bone and Mineral Research, 26(12), 2899–2910. doi:10.1002/jbmr.504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liakhovitskaia, A., Lana-Elola, E., Stamateris, E., Rice, D. P., van’t Hof, R. J., & Medvinsky, A. (2010). The essential requirement for Runx1 in the development of the sternum. Developmental Biology, 340(2), 539–546. doi:10.1016/j.ydbio.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  • Lim, K. E., Park, N. R., Che, X., Han, M. S., Jeong, J. H., Kim, S. Y., et al. (2015). Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice. Journal of Bone and Mineral Research, 30(4), 715–722. doi:10.1002/jbmr.2397.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Toyosawa, S., Furuichi, T., Kanatani, N., Yoshida, C., Liu, Y., Himeno, M., Narai, S., Yamaguchi, A., Komori, T. (2001). Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. The Journal of Cell Biology, 155(1), 157–166. doi:10.1083/jcb.200105052155/1/157 [pii].

    Google Scholar 

  • Marks Jr., S., & Odgren, P. (2002). Structure and development of the skeleton. In J. P. Bilezikian, L. G. Raisz, & G. A. Rodan (Eds.), Principles of bone biology. New York: Academic Press.

    Google Scholar 

  • Maruyama, Z., Yoshida, C. A., Furuichi, T., Amizuka, N., Ito, M., Fukuyama, R., et al. (2007). Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Developmental Dynamics, 236(7), 1876–1890. doi:10.1002/dvdy.21187.

    Article  CAS  PubMed  Google Scholar 

  • Mikasa, M., Rokutanda, S., Komori, H., Ito, K., Tsang, Y. S., Date, Y., et al. (2011). Regulation of Tcf7 by Runx2 in chondrocyte maturation and proliferation. Journal of Bone and Mineral Metabolism, 29(3), 291–299. doi:10.1007/s00774-010-0222-z.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J., Horner, A., Stacy, T., Lowrey, C., Lian, J. B., Stein, G., et al. (2002). The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nature Genetics, 32(4), 645–649. doi:10.1038/ng1049.

    Article  CAS  PubMed  Google Scholar 

  • Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 89(5), 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., & Shigesada, K. (1993). Molecular cloning and characterization of PEBP2 β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α. Virology, 194(1), 314–331. doi:10.1006/viro.1993.1262.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Park, M. H., Shin, H. I., Choi, J. Y., Nam, S. H., Kim, Y. J., Kim, H. J., & Ryoo, H. M. (2001). Differential expression patterns of Runx2 isoforms in cranial suture morphogenesis. Journal of Bone and Mineral Research, 16(5), 885–892. doi:10.1359/jbmr.2001.16.5.885.

    Article  CAS  PubMed  Google Scholar 

  • Porte, D., Tuckermann, J., Becker, M., Baumann, B., Teurich, S., Higgins, T., et al. (1999). Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone. Oncogene, 18(3), 667–678. doi:10.1038/sj.onc.1202333.

    Article  CAS  PubMed  Google Scholar 

  • Pullig, O., Weseloh, G., Gauer, S., & Swoboda, B. (2000). Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. Matrix Biology, 19(3), 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Qin, X., Jiang, Q., Matsuo, Y., Kawane, T., Komori, H., Moriishi, T., et al. (2015). Cbfb regulates bone development by stabilizing Runx family proteins. Journal of Bone and Mineral Research, 30(4), 706–714. doi:10.1002/jbmr.2379.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K., et al. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12359–12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., et al. (1998). Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 17(12), 1517–1525. doi:10.1038/sj.onc.1202064.

    Article  CAS  PubMed  Google Scholar 

  • Selvamurugan, N., Pulumati, M. R., Tyson, D. R., & Partridge, N. C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor α1. The Journal of Biological Chemistry, 275(7), 5037–5042.

    Article  CAS  PubMed  Google Scholar 

  • Shlopov, B. V., Lie, W. R., Mainardi, C. L., Cole, A. A., Chubinskaya, S., & Hasty, K. A. (1997). Osteoarthritic lesions: Involvement of three different collagenases. Arthritis and Rheumatism, 40(11), 2065–2074. doi:10.1002/1529-0131(199711)40:11&lt;2065::AID-ART20&gt;3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana, M., Tenno, M., Tezuka, C., Sugiyama, M., Yoshida, H., & Taniuchi, I. (2011). Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. Journal of Immunology, 186(3), 1450–1457. doi:10.4049/jimmunol.1000162.

    Article  CAS  Google Scholar 

  • Takarada, T., Hinoi, E., Nakazato, R., Ochi, H., Xu, C., Tsuchikane, A., et al. (2013). An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. Journal of Bone and Mineral Research, 28(10), 2064–2069. doi:10.1002/jbmr.1945.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, S., Bonnamy, J. P., Owen, M. J., Ducy, P., & Karsenty, G. (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes & Development, 15(4), 467–481. doi:10.1101/gad.845101.

    Article  CAS  Google Scholar 

  • Toyosawa, S., Shintani, S., Fujiwara, T., Ooshima, T., Sato, A., Ijuhin, N., & Komori, T. (2001). Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. Journal of Bone and Mineral Research, 16(11), 2017–2026. doi:10.1359/jbmr.2001.16.11.2017.

    Article  CAS  PubMed  Google Scholar 

  • Ueta, C., Iwamoto, M., Kanatani, N., Yoshida, C., Liu, Y., Enomoto-Iwamoto, M., et al. (2001). Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. The Journal of Cell Biology, 153(1), 87–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Mark, K., Kirsch, T., Nerlich, A., Kuss, A., Weseloh, G., Gluckert, K., & Stoss, H. (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis and Rheumatism, 35(7), 806–811.

    Article  PubMed  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., et al. (1996b). The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell, 87(4), 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M., Li, C., Zhu, G., Wang, Y., Jules, J., Lu, Y., et al. (2014a). Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone, 65, 49–59. doi:10.1016/j.bone.2014.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Li, Y. P., Zhu, G., Lu, Y., Wang, Y., Jules, J., et al. (2014b). Chondrocyte-specific knockout of Cbfβ reveals the indispensable function of Cbfβ in chondrocyte maturation, growth plate development and trabecular bone formation in mice. International Journal of Biological Sciences, 10(8), 861–872. doi:10.7150/ijbs.8521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida, C. A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., Komori, T. (2002). Core-binding factor β interacts with Runx2 and is required for skeletal development. Nature Genetics, 32(4), 633–638. doi:10.1038/ng1015ng1015 [pii].

  • Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., Komori, T. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Developement, 18(8), 952–963. doi:10.1101/gad.1174704 18/8/952 [pii].

    Google Scholar 

  • Yoshida, C. A., Komori, H., Maruyama, Z., Miyazaki, T., Kawasaki, K., Furuichi, T., et al. (2012). SP7 inhibits osteoblast differentiation at a late stage in mice. PloS One, 7(3), e32364. doi:10.1371/journal.pone.0032364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambotti, A., Makhluf, H., Shen, J., & Ducy, P. (2002). Characterization of an osteoblast-specific enhancer element in the CBFA1 gene. The Journal of Biological Chemistry, 277(44), 41497–41506. doi:10.1074/jbc.M204271200.

    Article  CAS  PubMed  Google Scholar 

  • Zelzer, E., Glotzer, D. J., Hartmann, C., Thomas, D., Fukai, N., Soker, S., & Olsen, B. R. (2001). Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of Development, 106(1–2), 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Hassan, M. Q., Xie, R. L., Hawse, J. R., Spelsberg, T. C., Montecino, M., et al. (2009). Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats). The Journal of Biological Chemistry, 284(5), 3125–3135. doi:10.1074/jbc.M807466200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Japanese Ministry of Education, Culture, Sports, Science and Technology to TK (Grant number: 26221310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Komori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Komori, T. (2017). Roles of Runx2 in Skeletal Development. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_6

Download citation

Publish with us

Policies and ethics