Skip to main content

Biology of Killer Yeast and Technological Implications

  • Chapter
  • First Online:
Yeast Diversity in Human Welfare

Abstract

The killer phenomenon has been reported among various genera of yeast. Potential ability of certain yeast (killer yeast) to kill the other yeast (sensitive yeast) was first observed in the strains of Saccharomyces cerevisiae. The killer yeasts secrete extracellular protein toxin that is fatal for the sensitive yeast, and kills the latter. Killer toxin producer yeasts are immune towards their own toxin but can kill the other sensitive yeasts by employing variety of mechanisms like targeting several cellular components viz. cell wall, plasma membrane, tRNA, DNA etc. The genetic information for production of killer toxin (killer phenotype) is generally present as extra-chromosomal genetic elements like dsRNA or linear DNA, or on the chromosome. The protein toxins produced by several killer yeasts have been thoroughly studied after purification and characterization. Killer toxins encoding genes have been cloned, characterized and expressed in heterologous systems. Significance of yeast-derived killer toxins and/or killer yeasts have been implicated in various areas including food fermentations/yeast-based bioprocesses. Yeast killer phenomenon may play a substantive role in stabilizing the ecosystem. Killer toxins of yeast may have potential for application as biopreservatives, biocontrol agents and as new therapeutic molecules especially against multidrug resistant pathogens. For ethanol-based industries like distilleries, breweries, and wineries, killer yeast can be employed as starter industrial yeast cultures to protect against the wild contaminants. Current article presents recent developments on biological and technological implications of killer yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar, C. and Lucas, C. 2000. Food Technol. Biotechnol. 38: 39–46.

    Google Scholar 

  • Ahmed, A., Sesti, F., Ilan, N., Shih, T.M., Sturley, S.L. and Goldstein, S.A.N. 1999. Cell 99: 283–291.

    Google Scholar 

  • Arroyo-Helguera, O., Alejandro, D.L.P. and Irene, C. 2012. Braz. J. Microbiol. 880–887.

    Google Scholar 

  • Baeza, M.E., Sanhueza, M.A. and Cifuentes, V.H. 2008. Biol. Res. 41: 173–182.

    Google Scholar 

  • Bajaj, B.K. and Sharma, S. 2010. Braz. J. Microbiol. 41: 477–485.

    Google Scholar 

  • Bajaj, B.K. and Tauro, P. 1994. Biotechnol. Lett. 16: 631–636.

    Google Scholar 

  • Bajaj, B.K., Dilbaghi, N. and Sharma, S. 2003. J. Sci. Ind. Res. 62: 714–717.

    Google Scholar 

  • Bajaj, B.K., Raina, S. and Singh, S. 2013. J. Basic Microbiol. 53: 645–656.

    Google Scholar 

  • Baz, A.F. and Shetaia, Y.M. 2005. Int. J. Agri. Biol. 7: 1003–1006.

    Google Scholar 

  • Bisson, L.F. 2004. Food Biotechnol. 18: 63–96.

    Google Scholar 

  • Bomblies, K. 2014. eLIFE 3:e03371.

    Google Scholar 

  • Bracesco, N., Salvo, V.A. and Nunes, E. 2006. FEMS Microbiol. Lett. 256: 132–136.

    Google Scholar 

  • Branco, P., Francisco, D., Chambon, C., Hebraud, M., Arneborg, N., Almeida, M.G., Caldeira, J. and Albergaria, H. 2014. Appl. Microbiol. Biotechnol. 98: 843–53.

    Google Scholar 

  • Breinig, F., Sendzik, T., Eisfeld, K. and Schmitt M.J. 2006. PNAS 103: 3810–3815.

    Google Scholar 

  • Buzdar, M.A., Chi, Z., Wang, Q., Hua, M.X. and Chi, Z.M. 2011. Appl. Microbiol. Biotechnol. 91: 1571–1579.

    Google Scholar 

  • Buzzini, P., Turchaetti, B. and Vaughan-Martini, A.E. 2007. FEMS Yeast Res. 7: 749–760.

    Google Scholar 

  • Buzzini, P., Turchetti, B. and Martini, A. 2004. J. Appl. Microbiol. 96: 1194–1201.

    Google Scholar 

  • Caramalac, D.A., da Silva Ruiz, L., de Batista, G.C., Birman, E.G., Duarte, M., Hahn, R. and Paula, C.R. 2007. Pediatr. Infect. Dis. J. 26: 553–557.

    Google Scholar 

  • Carrau, F.M., Neirotti, E. and Gioia, O. 1993. J. Ferment. Bioeng. 76: 67–69.

    Google Scholar 

  • Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J. and Middelhoven, W.J. 2002. Folia Microbiol. 47: 259–62.

    Google Scholar 

  • Chi, Z., Liu, G., Zhao, S., Li, J. and Peng, Y. 2010. Appl. Microbiol. Biotechnol. 86: 1227–1241.

    Google Scholar 

  • Ciani, M. and Comitini, F. 2011. Ann. Microbiol. 61: 25–32.

    Google Scholar 

  • Ciani, M. and Fatichenti F. 2001, Appl. Env. Microbiol. 67: 3058–3063.

    Google Scholar 

  • Ciani, M., Comitini, F., Mannazzu, I. and Domizio, P. 2010. FEMS Yeast Res. 10: 123–133.

    Google Scholar 

  • Coelho, A.R., Tachi, M., Pagnocca, F.C., Nobrega, G.M.A., Hoffmann, F.L., Harada, K. and Hirooka, E.Y. 2009. Food Add. Contaminants 26: 73–81.

    Google Scholar 

  • Comitini, F., Di Pietro, N., Zacchi, L., Mannazzu, I. and Ciani, M: 2004. Microbiol. 150: 2535–2541.

    Google Scholar 

  • Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencion, L., Mannazzu, I. and Ciani, M. 2011. Food Microbiol. 28: 873–882.

    Google Scholar 

  • Comitini, F., Mannazzu, I., and Ciani, M. 2009. Microb. Cell Fact. 8: 55.

    Google Scholar 

  • Dabhole, M.P. and Joishy, K.N. 2005. Indian J. Biotechnol. 4: 290–292.

    Google Scholar 

  • Elmaci, S., Ozcelik, F., Tokatli, M. and Cakir, I. 2014. Antonie Van Leeuwenhoek. 5: 835–47.

    Google Scholar 

  • Esteve-Zarzoso, B., Manzanares, P., Ramon, D. and Querol, A. 1998. Int. Microbiol. 1: 143–148.

    Google Scholar 

  • Farris, G.A., Fatichenti, F., Bifulco, I., Berordi, E., Deiana, P., Satta, T. 1992. Biotechnol. Lett. 14, 219–222.

    Google Scholar 

  • Fleet, G.H. 2003. J. Food Microbiol. 86: 11–22.

    Google Scholar 

  • Fuentefria, A.M., Perez, L.R.R., d’Azevedo, P.A., Pazzini, F., Schrank, A., Vainstein, M.H. and Valente, P. 2008. J. Basic Microbiol. 48: 25–30.

    Google Scholar 

  • Goretti, M., Turchetti, B., Buratta, M., Branda, E., Corazzi, L., Vaughan-Martini, A. and Buzzini, P. 2009. Int. J. Food Microbiol. 131: 178–182.

    Google Scholar 

  • Guo, F.J., Ma, Y., Xu, H.M., Wang, X.H. and Chi, Z.M. 2013. Antonie van Leeuwenhoek 103: 737–746.

    Google Scholar 

  • Gutierrez, A.R., Epifanio, S., Garijo, P., Lopez, R. and Santamaría, P. 2001. Am. J. Viticulture Enol. 52: 352–356.

    Google Scholar 

  • Guyard, C., Seguy, N., Cailliez, J.C., Drobecq, H., Polonelli, L., Dei-Cas, E., Mercenier, A. and Menozzi, F.D. 2002. J. Antimicrob. Chemother. 49: 961–971.

    Google Scholar 

  • Hammond, J.R.M. and Eckersley, K.W. 1984. J. Inst. Brew. 90: 167–177.

    Google Scholar 

  • Hatoum, R., Labrie, S. and Fliss, I. 2012. Frontiers in Microbiol. 3: 1–12.

    Google Scholar 

  • Heard, G.M. and Fleet, G.H. 1987. Appl. Env. Microbiol. 53: 2171–2174.

    Google Scholar 

  • Ingeniis, J.D., Raffaelli, N., Ciani, M. and Mannazzu, I. 2009. Appl. Env. Microbiol. 75: 1129–1134.

    Google Scholar 

  • Izgu, F. and Altinbay, D. 1997. Microbios. 89: 15–22.

    Google Scholar 

  • Izgu, F., Altinbay, D. and Acun, T. 2006. Enzym Microb. Technol. 39: 669–676.

    Google Scholar 

  • Jablonowski, D. and Schaffrath, R. 2007. Biochemical Society Transactions 35: 1533–1537.

    Google Scholar 

  • Javadekar, V.S., Sivaraman, H. and Gokhale, D.V. 1995. J. Ind. Microbiol. 15: 94–102.

    Google Scholar 

  • Keszthelyi, A. and Ohkusu, M. 2006. Mycoses 49: 176–183.

    Google Scholar 

  • Klassen, R., Teichert, S. and Meinhardt, F. 2004. Mol. Microbiol. 53: 263–273.

    Google Scholar 

  • Klassen, R., Wemhoff, S., Krause, J. and Meinhardt, F. 2011. Mol. Genet. Genomics 285: 185–195.

    Google Scholar 

  • Labbani, F.Z.K., Turchetti, B., Bennamoun, L., Dakhmouche, S., Roberti, R., Corazzi, L., Meraihi, Z. and Buzzini, P. 2015. Antonie van Leeuwenhoek 107: 961–970.

    Google Scholar 

  • LeBrasseur, N. 2005. J. Cell Biol. 168: 346–347.

    Google Scholar 

  • Liu, G., Chi, Z., Wang, G., Wang, Z., Li, Y. and Chi, Z. 2013. Crit. Rev. Biotechnol.

    Google Scholar 

  • Lopes, C.A. and Sangorrín, M.P. 2010. Revista Argentina de Microbiología 42: 298–306.

    Google Scholar 

  • Magliani, W., Conti, S., Salati, A., Vaccari, S., Ravanetti, L., Maffei, D.L. and Polonelli, L. 2004. FEMS Yeast Res. 5: 11–18.

    Google Scholar 

  • Magliani, W., Conti, S., Travassos, L.R. and Polonelli, L. 2008. FEMS Microbiol. Lett. 288: 1–8.

    Google Scholar 

  • Malherbe, S., Bauer, F.F., du Toit, M. 2007. South Afr. J. Enol. Viticult. 28: 169–186.

    Google Scholar 

  • Manzanares, P., Valles, S. and Viana, F. 2011. In: Molecular wine microbiology. (eds C.A.V. Santiago, R. Munoz and R.G. Garcia), Academic Press, Valencia, Spain, pp. 85–110.

    Google Scholar 

  • Marquina, D., Santos, A. and Peinado, J.M. 2002. Int. Microbiol. 5: 65–71.

    Google Scholar 

  • Maturano, Y.P., Nally, M.C., Toro, M.E., de Figueroa, L.I.C., Combina, M. and Vazquez, F. 2012. World J. Microbiol. Biotechnol. 28: 3135–3142.

    Google Scholar 

  • Melvydas, V., Serviene, E., Cernishova, O. and Petkuniene, G. 2007. Biologija 53: 32–35.

    Google Scholar 

  • Meneghin, M.C., Reis, V.R. and Antonini, S.R. 2010. Braz. Arch. Biol. Technol. 53: 1043–1050.

    Google Scholar 

  • Muccilli, S., Wemhoff, S., Restuccia, C. and Meinhardt, F. 2013. Yeast 30: 33–43.

    Google Scholar 

  • Mushtaq, M., Nahar, S. and Hashmi, M.H. 2010. Pak. J. Bot. 42: 4313–4327.

    Google Scholar 

  • Ochigava, I., Collier, P.J., Walker, G.M. and Hakenbeck, R. 2011. Antonie van Leeuwenhoek 99: 559–566.

    Google Scholar 

  • Papadimitriou, M.N., Resende, C., Kuchler, K. and Brul, S. 2007. Int. J. Food Microbiol. 113: 173–179.

    Google Scholar 

  • Peng, Y., Chi, Z., Wang, X. and Li, J. 2010. Mar. Biotechnol. 12: 479–85.

    Google Scholar 

  • Platania, C., Restuccia, C., Muccilli, S. and Cirvilleri, G. 2012. Food Microbiol. 30: 219–225.

    Google Scholar 

  • Polonelli, L. and Conti, S. 2009. Methods Mol. Biol. 499: 97–115.

    Google Scholar 

  • Polonelli, L., Archibusacci, C., Sestito, M. and Morace, G. 1983. J. Clin. Microbiol. 17: 774–780.

    Google Scholar 

  • Pretorius, I.S., duToit, M. and van Rensburg, P. 2003. Food Technol. Biotechnol. 41: 3–10.

    Google Scholar 

  • Ramon-Portugal, F., Delia, M.L., Strehaiano, P. and Riba, J.P. 1998. World J. Microbiol. Biotechnol. 14: 83–87.

    Google Scholar 

  • Reiter, J., Herker, E., Madeo, F. and Schmitt, M.J. 2005. J. Cell Biol. 168: 353–358.

    Google Scholar 

  • Robledo-Leal, E., Elizondo-Zertuche, M., Villarreal-Treviño, L., Treviño-Rangel, R.D., García-Maldonado, N., Adame-Rodríguez, J.M. and González, G.M. 2014. Folia Microbiol. 59: 503–506.

    Google Scholar 

  • Robledo-Leal, E., Villarreal-Trevino, L. and Gonzalez, G.M. 2012. Trop. Biomed. 29: 297–300.

    Google Scholar 

  • Salek, A., Schnettler, R. and Zimmermann, U. 1992. FEMS Microbiol. Lett. 75: 103–109.

    Google Scholar 

  • Salek, A.T. and Arnold, W.M. 1994. Chem. Mikrobiol. Technol. 16: 165–183.

    Google Scholar 

  • Santos, A., Alonso, A., Belda, I. and Marquina, D. 2013. Fungal Gen. Biol. 50: 44–54.

    Google Scholar 

  • Santos, A., Marquina, D., Leal, J.A. and Peinado, J.M. 2000. Appl. Environ. Microbiol. 66: 1809–1813.

    Google Scholar 

  • Santos, A., Mauro, M.S., Bravo, E. and Marquina, D. 2009. Microbiol. 155: 624–634.

    Google Scholar 

  • Santos, A., Navascues, E., Bravo, E. and Marquina, D. 2011. Int. J. Food Microbiol. 145: 147–154.

    Google Scholar 

  • Satyanarayana, T. and Kunze, G. 2009. Yeast biotechnology: diversity and applications. Springer, Berlin, pp. 489–715.

    Google Scholar 

  • Scheid, L.A., Mario, D.A., Heins-Vaccari, E.M., Santuario, J.M. and Alves, S.H. 2010. Rev. Inst. Med. Trop. Sao Paulo. 52: 161–2.

    Google Scholar 

  • Schmitt M.J. and Breinig, F. 2002. FEMS Microbiol. Reviews 26: 257–276.

    Google Scholar 

  • Schmitt, M.J. and Schernikau, G. 1997. Food Technol. Biotechnol. 35: 281–285.

    Google Scholar 

  • Selvakumar, D. and Miyamoto, M. 2006. Antimicrob. Agents Chem. 50: 3090–3097.

    Google Scholar 

  • Silva, S., Calado, S., Lucas, C. and Aguiar, C. 2008. Microbiol. Res. 163: 243–251.

    Google Scholar 

  • Sinclair, R.M. 2014. Frontiers in Microbiol. 5: 1–5.

    Google Scholar 

  • Soares, G.A.M. and Sato, H.H. 2000. Braz. J. Microbiol. 31: 291–297.

    Google Scholar 

  • Starmer, W.T., Ganter, P.F., Aberdeen, V., Lachance, M.A. and Phaff, H.J. 1987. Can. J. Microbiol. 33: 783–96.

    Google Scholar 

  • Stopiglia, C.D., Heidrich, D., Sorrentino, J.M., Vieira, F.J., Landell, M.F., Valente, P. and Scroferneker, M.L. 2014. J. Basic Microbiol. 54: 578–84.

    Google Scholar 

  • Stratford, M. 2006. In: The yeast handbook: yeast in food and beverages. (eds A. Querol and G.H. Fleet), Springer-Verlag Berlin, pp 335–379.

    Google Scholar 

  • Suzuki, C., Kawano, M., Kashiwagi, T., Arata, Y., Kawasumi, T. and Kashiwagi, Y. 2000. Protein Eng. 13: 73–76.

    Google Scholar 

  • Ullivarri, M.F., Mendoza, L.M. and Raya, R.R. 2014. Antonie van Leeuwenhoek 106: 865–878.

    Google Scholar 

  • Vadasz, A.S., Franken, D.B., Govender, B.L., Jagganath, D.B., Govender, P., Ariatti, M., Pretorius, I.S. and Gupthar, A.S. 2002. South Afr. J. Enol. Viticulture 23: 39–47.

    Google Scholar 

  • Wang, X., Chi, Z., Yue, L. and Li, J. 2007. Curr. Microbiol. 55: 396–401.

    Google Scholar 

  • Wang, X.X., Chi, Z., Peng, Y., Wang, X.H., Ru, S.G. and Chi, Z.M. 2012. Microbiol. Res. 167: 558–63.

    Google Scholar 

  • Webster, J. and Weber, R. 2007. Introduction to fungi. Cambridge University Press, New York, pp 226–247.

    Google Scholar 

  • Wickner, R.B., Fujimura, T. and Esteban, R. 2013. Adv. Virus Res. 86: 1–36.

    Google Scholar 

Download references

Acknowledgements

Dr. Bijender Kumar Bajaj gratefully acknowledges Council of Scientific and Industrial Research (CSIR) and University Grants Commission (UGC) for financially supporting ‘Killer Yeast’ research in the form of research projects; ERUSMUS-MUNDUS (EU) and VLIR-UOS (Govt. of Belgium) for providing fellowships for ‘Research Stays’ respectively, at University of Naples, Naples, Italy, and University of Antwerp, Antwerpen, Belgium. Dr. Satbir Singh acknowledges CSIR for JRF/SRF for doctoral research. Authors thank Director, School of Biotechnology, University of Jammu, Jammu, for necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Kumar Bajaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bajaj, B.K., Singh, S. (2017). Biology of Killer Yeast and Technological Implications. In: Satyanarayana, T., Kunze, G. (eds) Yeast Diversity in Human Welfare. Springer, Singapore. https://doi.org/10.1007/978-981-10-2621-8_7

Download citation

Publish with us

Policies and ethics