Skip to main content

EABR of Inner Ear Malformation and Cochlear Nerve Deficiency After Cochlear Implantation in Children

  • Chapter
  • First Online:
Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

Abstract

When cochlear implantation has been performed in a case involving inner ear malformations, it is particularly important to perform objective physiological measurements of the cochlear implant. The inner ear malformations can be divided into categories according to the observation of modiolus deficiency and/or cochlear nerve deficiency (CND). CND severity can be categorized in one of three ways, according to the MRI findings: (1) a hypoplastic cochlear nerve, (2) the absence of cochlear nerve, and (3) the absence of vestibulocochlear nerve. EABR is a reliable and effective way of objectively confirming device function and implant responsiveness of the peripheral auditory neurons up to the level of the brainstem in cases of inner ear malformation. EABR can often be recorded in cases in which the presence of excessive stimulus artifacts precludes the successful acquisition of ECAP, such as in cases with modiolus deficiency cochlea. This chapter presents cases with or without modiolus deficiency, depending on the severity of cochlear nerve deficiency, and describes their EABR characteristics. Vestibular simulated EABR is also shown, demonstrating the interactions between vestibular and auditory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson ML, Archibald DJ, Dabade TS, Gifford RH, Neff BA, Beatty CW, et al. Prevalence and timing of individual cochlear implant electrode failures. Otol Neurotol. 2010;31(6):893–8. doi:10.1097/MAO.0b013e3181d2d697.

    Article  PubMed  Google Scholar 

  2. Lorens A, Walkowiak A, Piotrowska A, Skarzynski H, Anderson I. ESRT and MCL correlations in experienced paediatric cochlear implant users. Cochlear Implants Int. 2004;5(1):28–37. doi:10.1002/cii.121.

    Article  PubMed  Google Scholar 

  3. Botros A, Psarros C. Neural response telemetry reconsidered: I. The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting. Ear Hear. 2010;31(3):367–79. doi:10.1097/AUD.0b013e3181c9fd86.

    Article  PubMed  Google Scholar 

  4. Bierer JA, Faulkner KF, Tremblay KL. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration. Ear Hear. 2011;32(4):436–44. doi:10.1097/AUD.0b013e3181ff33ab.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller AL, Arenberg JG, Middlebrooks JC, Pfingst BE. Cochlear implant thresholds: comparison of middle latency responses with psychophysical and cortical-spike-activity thresholds. Hear Res. 2001;152(1–2):55–66.

    Article  CAS  PubMed  Google Scholar 

  6. Beynon AJ, Snik AF, van den Broek P. Evaluation of cochlear implant benefit with auditory cortical evoked potentials. Int J Audiol. 2002;41(7):429–35.

    Article  PubMed  Google Scholar 

  7. Firszt JB, Chambers RD. Kraus, Reeder RM. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear Hear. 2002;23(6):502–15. doi:10.1097/01.AUD.0000042153.40602.54.

    Article  PubMed  Google Scholar 

  8. Minami SB, Takegoshi H, Shinjo Y, Enomoto C, Kaga K. Usefulness of measuring electrically evoked auditory brainstem responses in children with inner ear malformations during cochlear implantation. Acta Otolaryngol. 2015;135(10):1007–15. doi:10.3109/00016489.2015.1048377.

    Article  PubMed  Google Scholar 

  9. Smith PF. Interactions between the vestibular nucleus and the dorsal cochlear nucleus: implications for tinnitus. Hear Res. 2012;292(1–2):80–2. doi:10.1016/j.heares.2012.08.006.

    Article  PubMed  Google Scholar 

  10. Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M. Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One. 2012;7(5), e35955. doi:10.1371/journal.pone.0035955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujiro Minami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Minami, S., Kaga, K. (2017). EABR of Inner Ear Malformation and Cochlear Nerve Deficiency After Cochlear Implantation in Children. In: Kaga, K. (eds) Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency. Modern Otology and Neurotology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1400-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1400-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1399-7

  • Online ISBN: 978-981-10-1400-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics