Skip to main content

Layer-Wise Relevance Propagation for Deep Neural Network Architectures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 376))

Abstract

We present the application of layer-wise relevance propagation to several deep neural networks such as the BVLC reference neural net and googlenet trained on ImageNet and MIT Places datasets. Layer-wise relevance propagation is a method to compute scores for image pixels and image regions denoting the impact of the particular image region on the prediction of the classifier for one particular test image. We demonstrate the impact of different parameter settings on the resulting explanation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Bach, S., Binder, A., Montavon, G., Müller, K., Samek, W.: Analyzing classifiers: Fisher vectors and deep neural networks. CoRR abs/1512.00172 (2015)

    Google Scholar 

  3. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. Journal of Machine Learning Research 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Braun, M.L., Buhmann, J.M., Müller, K.: On relevant dimensions in kernel feature spaces. Journal of Machine Learning Research 9, 1875–1908 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (BMVC) (2014)

    Google Scholar 

  6. Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Adv. in NIPS, pp. 2852–2860 (2012)

    Google Scholar 

  7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537 (2011)

    MATH  Google Scholar 

  8. Dosovitskiy, A., Brox, T.: Inverting convolutional networks with convolutional networks. CoRR abs/1506.02753 (2015)

    Google Scholar 

  9. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Tech. Rep. 1341, University of Montreal, June 2009

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results

    Google Scholar 

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. CoRR abs/1412.6572 (2014)

    Google Scholar 

  12. Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.R.: Visual interpretation of kernel-based prediction models. Molecular Informatics 30(9), 817–826 (2011)

    Article  Google Scholar 

  13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. CoRR abs/1408.5093 (2014)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Adv. in NIPS 25, pp. 1106–1114 (2012)

    Google Scholar 

  15. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: ICASSP, pp. 8595–8598 (2013)

    Google Scholar 

  16. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  17. Montavon, G., Bach, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. CoRR abs/1512.02479 (2015)

    Google Scholar 

  18. Montavon, G., Braun, M., Müller, K.R.: Kernel analysis of deep networks. Journal of Machine Learning Research 12, 2563–2581 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Montavon, G., Braun, M.L., Krueger, T., Müller, K.R.: Analyzing local structure in kernel-based learning: Explanation, complexity and reliability assessment. Signal Processing Magazine, IEEE 30(4), 62–74 (2013)

    Article  Google Scholar 

  20. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014)

    Google Scholar 

  21. Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. CoRR abs/1509.06321 (2015)

    Google Scholar 

  22. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR abs/1312.6034 (2013)

    Google Scholar 

  23. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proc. of EMNLP, pp. 1631–1642 (2013)

    Google Scholar 

  24. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van- houcke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google Scholar 

  25. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

    Google Scholar 

  26. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs/1506.06579 (2015)

    Google Scholar 

  27. Yu, D., Deng, L.: Automatic Speech Recognition - A Deep Learning Approach. Springer (2014)

    Google Scholar 

  28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: ECCV, pp. 818–833 (2014)

    Google Scholar 

  29. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Adv. in NIPS, pp. 487–495 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Binder, A., Bach, S., Montavon, G., Müller, KR., Samek, W. (2016). Layer-Wise Relevance Propagation for Deep Neural Network Architectures. In: Kim, K., Joukov, N. (eds) Information Science and Applications (ICISA) 2016. Lecture Notes in Electrical Engineering, vol 376. Springer, Singapore. https://doi.org/10.1007/978-981-10-0557-2_87

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0557-2_87

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0556-5

  • Online ISBN: 978-981-10-0557-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics