Skip to main content

Immunological Features of AECHB

  • Chapter
  • First Online:
Acute Exacerbation of Chronic Hepatitis B

Abstract

This chapter describes the immunologic features of liver, the immune mediated pathogenesis of both innate and adaptive immune system, the key role of immune coagulation, antiviral therapy and immune response in AECHB and HBV ACLF.

  1. 1.

    The liver is an organ with predominant innate immunity, playing an important role not only in host defenses but also in liver injury and repair. The liver is continuously exposed to a large antigenic load that includes pathogens, toxins, tumor cells and harmless dietary antigens. The range of local immune mechanisms required to cope with this diverse immunological challenge is now being appreciated. The liver contains large numbers of phagocytic cells, antigen-presenting cells and lymphocytes. The liver comprises enrichment of large numbers of non-specific immune cells, including natural killer (NK) cells, T cells expressing γδ (γδT cells) and T cells expressing NK molecules (NKT cells). These cells are crucial for early defenses against viral infection through direct cytotoxic and non-cytolytic mechanisms. In addition, these cells participate in the progression of severe hepatitis B by initiating specific immune response (Doherty DG, O’Farrelly C, Immunol Rev. 174:5–20, 2000; Racanelli V, Rehermann B. Hepatology 43(2 Suppl 1):S54–62, 2006; Crispe IN. Annu Rev Immunol. 27:147–163, 2009; Gong FL. Medical immunology, 4th ed. Science Publishing House, pp. 371–377).

  2. 2.

    As the first sensor to recognize HBV and its products, pattern recognition receptors (PRRs) such as toll--like receptors (TLRs), induce the expression of immune related genes and proinflammatory genes by activating intracellular signal transduction pathways. These pathways induce inflammatory and anti-viral responses that affect the occurrence and development of severe hepatitis B.

  3. 3.

    Clinical outcomes of viral infection are closely related to the specificity and intensity of specific immune responses. During the development of severe hepatitis B, the host immune response is characterized by dysfunction of antigen specific CTLs and imbalance of T lymphocyte subsets. Large numbers of infiltrated non-specific inflammatory cells and apoptosis of hepatocytes were also observed in liver tissue from patients. The liver immune system is characterized by the unique tolerance nature of liver. HBV persistence induces systemic adaptive cellular and humoral immunotolerance, which severely impairs the HBV clearance.

  4. 4.

    Most coagulation factors, anticoagulant proteins and components of the fibrinolytic system are synthesized and cleared in the liver. Severe hepatitis or liver failure can cause coagulation abnormalities, including microcirculation disorders of the liver induced by macrophages and fibrinogen-like protein 2(fgl2) prothrombinase, peripheral circulation dysfunction induced by impaired liver function, as well as disseminated intravascular coagulation (DIC). Coagulation failure has been typically thought of as one of the six most characteristic organ/system failure(s) during ACLF progress.

  5. 5.

    Currently approved anti-viral treatment options includes Nucleos(t)ide analogues (NAs) and interferon-a (IFN-a). NAs and Peg-IFN have differential effects on the innate and adaptive immune responses. Early anti-viral treatment can not only inhibit virus replication, but also help in the recovery of host immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000;174:5–20.

    Article  CAS  PubMed  Google Scholar 

  2. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.

    Article  CAS  PubMed  Google Scholar 

  3. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. USA. 2009;27:147–63.

    Article  CAS  PubMed  Google Scholar 

  4. Gong FL. Medical immunology, 4th ed. Science Publishing House. China. p. 371–7.

    Google Scholar 

  5. Heymann F, Tacke F. Immunology in the liver—from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):88–110.

    Article  CAS  PubMed  Google Scholar 

  6. Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Natl Rev. 2012;12(3):201–13.

    CAS  Google Scholar 

  7. Klugewitz K, Adams DH, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol. 2004;25(11):590–4.

    Article  CAS  PubMed  Google Scholar 

  8. Godfrey DI, Uldrich AP, Mccluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23.

    Article  CAS  PubMed  Google Scholar 

  9. Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol. 1998;28(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  10. Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol. 2016;13(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  11. Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol. 2016;13(3):337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  13. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996–1006.

    Article  CAS  PubMed  Google Scholar 

  14. Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75.

    Article  CAS  PubMed  Google Scholar 

  15. Grant CR, Liberal R. Liver immunology: how to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol. 2017;41(1):6–16.

    Article  CAS  PubMed  Google Scholar 

  16. Thomson AW, O’Connell PJ, Steptoe RJ, Lu L. Immunobiology of liver dendritic cells. Immunol Cell Biol. 2002;80(1):65–73.

    Article  PubMed  Google Scholar 

  17. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  18. Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. SeminImmunopathol. 2013;35(1):23–38.

    CAS  Google Scholar 

  19. Gao B. Basic liver immunology. Cell Mol Immunol. 2016;13(3):265–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol. 2015;12(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  21. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.

    Article  CAS  PubMed  Google Scholar 

  22. Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78(11):5535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol. 2009;3(5):499–512.

    Article  CAS  PubMed  Google Scholar 

  25. Kong X, Sun R, Chen Y, Wei H, Tian Z. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol. 2014;193(4):1645–53.

    Article  CAS  PubMed  Google Scholar 

  26. Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, Lascar RM, Brown D, Gilson RJ, Tedder RJ, Dusheiko GM, Jacobs M, Klenerman P, Maini MK. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology. 2009;137(4):1289–300.

    Article  CAS  PubMed  Google Scholar 

  27. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest. 2004;114(5):701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.

    Article  CAS  PubMed  Google Scholar 

  29. Han Q, Lan P, Zhang J, Zhang C, Tian Z. Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation. J Gastroenterol Hepatol. 2013;28(Suppl 1):132–7.

    Article  CAS  PubMed  Google Scholar 

  30. Revill P, Yuan Z. New insights into how HBV manipulates the innate immune response to establish acute and persistent infection. Antivir Ther. 2013;18:1–15.

    Article  CAS  PubMed  Google Scholar 

  31. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisad FV. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Busca A, Kumar A. Innate immune response in hepatitis B (HBV) infection. Virol J. 2014;11:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu HY, Zhang XY. Innate immune recognition of hepatitis B virus. World J Hepatol. 2015;28:2319–22.

    Article  Google Scholar 

  34. Chang KM. Immunopathogenesis of clinics. J C Virus Infection Liver Dis. 2003;7:89–105.

    Article  Google Scholar 

  35. Ferrari C. HBV and the immune response. Liver Int. 2015;35(Suppl 1):121–8.

    Article  CAS  PubMed  Google Scholar 

  36. Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, et al. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am J Physiol Gastrointest Liver Physiol. 2005;289:G831–41.

    Article  CAS  PubMed  Google Scholar 

  37. Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimotor E-DW, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor2 / DR5 expression and apoptosis. J Biol Chem. 2001;276:38610–8.

    Article  CAS  PubMed  Google Scholar 

  38. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Robert PJ, Svingen PA, Kaufmann SH, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct action of Fas. J Clin lnvest. 1999;103:137–45.

    Article  CAS  Google Scholar 

  39. Levy GA, Liu M, Ding J, et al. Molecular and functional analysis of the human prothrombinase gene (hfgl2) and its role in viral hepatitis. Am J Pathol. 2000;156(4):1217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kilgore NE, Ford MI, Margot CD, Jones DS, Reichardt P. Evavo1d BD necessary defining the parameters for T-cell recognition of ligands that vary in potency Immunologic research, vol. 29; 2004. p. 29–40.

    Google Scholar 

  41. Wang S, Chen L. T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol. 2004;1:37–42.

    PubMed  Google Scholar 

  42. Chandok MR, Farber DL. Control of memory T cell signaling generation and function. Semin Immunol. 2004;16:285–93.

    Article  CAS  PubMed  Google Scholar 

  43. Rehermann B, Nascimbeni M. Immunology and hepatitis C virus B virus infection. Nat Rev Immunol. 2005;5:215–29.

    Article  CAS  PubMed  Google Scholar 

  44. Grakoui A, Shonkry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003;302:659–62.

    Article  CAS  PubMed  Google Scholar 

  45. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis B virus infection. Science. 2004;305:872–4.

    Article  CAS  PubMed  Google Scholar 

  46. Crotta S, Sdlla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2002;195:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Connor GM, Hart OM, Gardiner CM. Putting the natural killer cell in its place. Immunology. 2006;117:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol. 2006;118:1–10.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu C, Sun Y, Luo X, et al. Novel mfgl2 anti-sense plasmid inhibits murine fgl2 expression and ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther. 2006;17:589–600.

    Article  CAS  PubMed  Google Scholar 

  51. Ning Q, Liu M, Kongkham P, Lai MM, Marsden PA, Tseng J, Pereira B, Belyavskyi M, Leibowitz J, Phillips MJ, Levy G. The nucleocapsid protein of murine virus type 3 induces journal transcription of the novel prothrombinase Gene FGL2. J Biol Chem. 1999;274(15):9930–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ning Q, Lakatoo S, Liu M, Yang W, Wang Z, Phillips MJ, Levy G. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J Biol Chem. 2003;278(18):15541–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ashton-Rickardt PG. The granule pathway of programmed cell death. Crit Rev Immunol. 2005;25:161–82.

    Article  CAS  PubMed  Google Scholar 

  54. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 2002;20:323–70.

    Article  CAS  PubMed  Google Scholar 

  55. Kam CM, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta. 2000;1477:307, 323.

    Article  Google Scholar 

  56. Beresford PJ, Zhang D, Oh DY, Fan Z, Greef EL, Russo ML, Jaju M, et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem. 2001;276:43285–93.

    Article  CAS  PubMed  Google Scholar 

  57. Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. In: Proc Natl Acad Sci U S A, vol. 96; 1999. p. 8627–32.

    Google Scholar 

  58. Simon MM, Hausmann M, Tran T, Ebnet K, Tschopp J, Thahla R, Mullbacher A. In vitro and ex-vivo-derived cytolytic leukocyte s from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J Exp Med. 1997;186:1781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson H, Scorrano L, Korsmeyer SJ, Ley TJ. Cell death induced by granzyme C. Blood. 2003;101:3093–101.

    Article  CAS  PubMed  Google Scholar 

  60. Kell JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M mediates a novel form of perforin-dependent cell death. J Biol Chem. 2004;279:22236–42.

    Article  CAS  Google Scholar 

  61. Vermijlen D, Luo D, Froelich CJ, MedemaJP KJA, Willems E, Braet F, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway. J Leukoc Biol. 2002;72:668–76.

    CAS  PubMed  Google Scholar 

  62. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

    Article  CAS  PubMed  Google Scholar 

  63. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    Article  CAS  PubMed  Google Scholar 

  64. Zender L, Hutker S, Mundt B, Waltemathe M, Klein C, Trautwein C, Malek NP, et al. NFkappaB-mediated upregulation on bcl-xl restrains of TRAIL-mediated apoptosis in s murine viral hepatitis. J Hepatol. 2005;41:280–8.

    Article  CAS  Google Scholar 

  65. Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowch H, Chen J, et al. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem. 2002;277:26912–20.

    Article  CAS  PubMed  Google Scholar 

  66. Bots M, Kolfschoten IG, Bres SA, Rademaker MT, de Roo GM, Kruse M, Franken KL, et al. SPI-CI and SPL6 cooperate in the protection from effector c ELL-mediated cytotoxicity. Blood. 2005;105:1153–61.

    Article  CAS  PubMed  Google Scholar 

  67. Bird PI. Regulation of pro-apoptotic leucocyte granule serine Proteinases by intracellular serpins. Immunol Cell Biol. 1999;77:47–57.

    Article  CAS  PubMed  Google Scholar 

  68. Barrie MB, Stout HW, Abougergi MS, Miller BC, Thiele DL. Antiviral cytokines induce hepatic expression of the Granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitors 6. J Immunol. 2004;172:6453–9.

    Article  CAS  PubMed  Google Scholar 

  69. Zheng SJ, Wang P, Tsabary G, Chen YH. Critical roles of TRAIL in hepatic inflammation and hepatic. Cell Death J Clin Invest. 2004;113:58–64.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang HG, Xie J, Xu I, Yang P, Xu X, Sun S, Wang Y, et al. Hepatic DR5 Induces Apoptosis and Limits Adenovirus Gene Therapy Product Expression in the Liver. J Virol. 2002;76:5692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tay CH, Welsh RM. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection natural killer cells. J Virol. 1997;7:267–75.

    Article  Google Scholar 

  72. Abougergi MS, Gidner SJ, Spady DK, Miller BC, Thiele DL. Fas and TNFRl, but not cytolytic granule-dependent mechanisms, mediate clearance of murine 1iver adenoviral infection. Hepatology. 2005;41:97–105.

    Article  CAS  PubMed  Google Scholar 

  73. Chirmule N, Moscioni AD, Qian Y, Qian R, Chen Y, Wilson JM. Fas-Fas ligand interactions play a major role in effector functions of cytotoxic T lymphocytes after adenovirus vector-mediated gene transfer. Hum Gene Ther. 1999;10:259–69.

    Article  CAS  PubMed  Google Scholar 

  74. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, et al. Lethal effect of the anti-Fas antibody in mice. Nature. 1993;364:806–9.

    Article  CAS  PubMed  Google Scholar 

  75. Chirmule N, Moffent J, Dhagat P, Tazelaar J, Wilson JM. Adenoviral vector-mediated gene therapy in the mouse lung: no role of Fas-Fas ligand interactions for elimination of transgene expression in bronchioepithelial cells. Hum Gene Ther. 1999;10:2839–46.

    Article  CAS  PubMed  Google Scholar 

  76. Upstream S, Zhangchu Y, Wei H. NK cells on T cells into mouse liver research adenovirus infection aggregation. Chin J Microbiol Immunol. 2002;221(1):45–8.

    Google Scholar 

  77. Yi T, Lihuang Z. NKT cells in the role of viral hepatitis. Int J Epidemiol Infect Dis. 2005;32(4):211–4.

    Google Scholar 

  78. Mcllroy D, Theodorou I, Ratziu V, Vidaud D, Pellet P, Debre P, Poynard T. Fas promoter polymorphisms correlate with activity grade in hepatitis C patients. Eur J Gastroenterol Hepatol. 2005;17:1081–8.

    Article  Google Scholar 

  79. Dissono HD, Desagher S, Loesch K, Hahne M, Kremer EJ, Jacquet C, et al. Impaired clearance of virus-infected hepatocytes in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology. 2004;126:859–72.

    Article  CAS  Google Scholar 

  80. Hahn YS. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion. Curr Opin Immunol. 2003;15:443–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lee SH, Kim YK, Kim CS, Seol SK, Kim J, Cho S, Song YL, et al. E2 of hepatitis C virus inhibits apoptosis. J Immunol. 2005;175:8226–35.

    Article  CAS  PubMed  Google Scholar 

  82. Liu MF, Chan CW, McGilvray I, Ning Q, et al. Fulminant viral hepatitis: molecular and cellular basis, and clinical implications. Expert Rev Mol Med. 2001;28:1–19.

    Article  CAS  Google Scholar 

  83. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, Wu Z, Wang X, Zhu C, Luo X, Ning Q. NKG2D/NKG2D ligand contributes to hepatocyte in virus-induced liver necrosis failure. J Immunol. 2010;184:466–75.

    Article  CAS  PubMed  Google Scholar 

  84. Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, Farrelly O. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol. 1998;28:84–90.

    Article  CAS  PubMed  Google Scholar 

  85. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Ross Lopes A, Borrow P, Williams K, Humphreys E, Simon Afford, Adams DH, Bertoletti A, Maini MK. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204:667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007;46(3):706–15.

    Article  CAS  PubMed  Google Scholar 

  87. Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H, Ishiyama K, Zhou W, Tanaka Y, Asahara T. Liver NK cells expressing TRAIL in hepatocytes are toxic Against Self MICE. Hepatology. 2004;39(5):1321–31.

    Article  CAS  PubMed  Google Scholar 

  88. Vyas YM, Maniar H, Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev. 2002;189:161–78.

    Article  CAS  PubMed  Google Scholar 

  89. Leo A, Wienands J, Baier G, Horejsi V, Schraven B. Adapters in lymphocyte signaling. J Clin Invest. 2002;109:301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang T-T, Cheung SM, Li H, Samuel M, et al. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev. 2009;232:255–72.

    Article  CAS  PubMed  Google Scholar 

  91. Marshall AJ, Niiro H, Lerner CG, et al. A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. J Exp Med. 2000;191(8):1319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guse AH, da Silva CP, Berg I, et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 1999;398:70–3.

    Article  CAS  PubMed  Google Scholar 

  93. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ning Q, Liu M, Kongkham P, et al. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem. 1999;274:9930–6.

    Article  CAS  PubMed  Google Scholar 

  95. Ning Q, Lakatoo S, Liu M, et al. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J Biol Chem. 2003;278:15541–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zhu CL, Sun Y, Luo XP, et al. Novel mfgl2 antisense plasmid inhibits mfgl2 expression and ameliorates MHV -3 induced fulminant hepatitis in Balb/cJ mice. Hum Gene Ther. 2006;17:589–600.

    Article  CAS  PubMed  Google Scholar 

  97. Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994;8:1664–77.

    Article  CAS  PubMed  Google Scholar 

  98. Contini P, Ghio M, Merlo A, et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J Immunol. 2005;175:7244–54.

    Article  CAS  PubMed  Google Scholar 

  99. Launay P, Cheng H, Srivatsan S, et al. TRPM4 regulates calcium oscillations after T cell activation. Science. 2004;306:1374–47.

    Article  CAS  PubMed  Google Scholar 

  100. Kotturi MF, Carlow DA, Lee JC, et al. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem. 2003;278:46949–60.

    Article  CAS  PubMed  Google Scholar 

  101. Ahluwalia J, Tinker A, Clapp LH, et al. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature. 2004;427:853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Srivastava S, Li Z, Ko K, et al. Histidine phosphorylation of the Potassium Channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell. 2006;24:665–75.

    Article  CAS  PubMed  Google Scholar 

  103. Panyi G, Possani LD, Rodriguez de la Vega RC, et al. K+ channel blockers: novel tools to INHIBIT T cell activation leading to specific immunosuppression. Curr Pharm Des. 2006;12:2199–220.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang ZX, Yang L, Young KJ, Du Temple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med. 2000;6:782–9.

    Article  CAS  PubMed  Google Scholar 

  105. Matsuzaki G, Takada H, Nomoto K. Escherichia coli infection induces only Gamma Delta fetal Thymus-derived T cells at the infected site. Eur J Immunol. 1999;29(12):3877–86.

    Article  CAS  PubMed  Google Scholar 

  106. Szymanska B, Rajan AJ, Gao YL, Tronczynska E, Brosnan CF, Selmaj K. Evidence for gammadelta T cells with a restricted Vgamma6 normal junctional region in the central nervous system mouse. J Neuroimmunol. 1999;100(1–2):260–5.

    Article  CAS  PubMed  Google Scholar 

  107. Sun Lu fruit. γδT cells and their biological significance in immune tolerance. Int J Immunol. 2000;23:77–80.

    Google Scholar 

  108. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier Company; 2014.

    Google Scholar 

  109. Parslow TG, Stites DP, Terr AI, Imboden JB. Medical immunology. 10th ed. New York: McGraw-Hill Company; 2002.

    Google Scholar 

  110. Gong FL. Medical immunology. 4th ed: Science Publishing House; 2014.

    Google Scholar 

  111. Goldsby RA, Kindt TJ, Osborne BA, Kuby J. Immunology. 5th ed. New York: W.H. Freeman and Company; 2003.

    Google Scholar 

  112. Cao XT. Advances in immunity. 2nd ed. Beijing: People’s Medical Publishing House; 2009.

    Google Scholar 

  113. Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  114. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  115. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  116. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–78.

    Article  CAS  PubMed  Google Scholar 

  117. Born WK, Yin Z, Hahn YS, Sun D, O’Brien RL. Analysis of gamma delta T cell functions in the mouse. J Immunol. 2010;184(8):4055–61.

    Article  CAS  PubMed  Google Scholar 

  118. Casetti R, Martino A. The plasticity of gamma delta T cells: innate immunity, antigen presentation and new immunotherapy. Cell Mol Immunol. 2008;5(3):161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liang TJ, Hepatitis B. The virus and disease. Hepatology. 2009;49(Suppl 5):S13–21.

    Article  CAS  PubMed  Google Scholar 

  120. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet. 2009;373(9663):582–92.

    Article  CAS  PubMed  Google Scholar 

  121. Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009;49(5 Suppl):S56–60.

    Article  PubMed  Google Scholar 

  122. Das A, Maini MK. Innate and adaptive immune responses in hepatitis B virus infection. Dig Dis. 2010;28(1):126–32.

    Article  PubMed  CAS  Google Scholar 

  123. Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis. 2011;29(4):423–33.

    Article  PubMed  Google Scholar 

  124. Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol. 2009;3(5):499–512.

    Article  CAS  PubMed  Google Scholar 

  125. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5(3):215–29.

    Article  CAS  PubMed  Google Scholar 

  126. Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infection. Hepatology. 2001;33(5):1312–20.

    Article  CAS  PubMed  Google Scholar 

  127. Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor gamma-delta T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(delta)2 subtype and chronic HBV infection. J Infect Dis. 2008;198(11):1643–50.

    Article  PubMed  Google Scholar 

  128. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris). 2010;58(4):258–66.

    Article  CAS  Google Scholar 

  129. Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61(Suppl 1):i6–17.

    Article  CAS  PubMed  Google Scholar 

  130. Wu Z, Han M, Chen T, Yan W, Ning Q. Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int. 2010;30(6):782–94.

    Article  CAS  PubMed  Google Scholar 

  131. Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.

    Article  PubMed  Google Scholar 

  132. Zhai S, Zhang L, Dang S, Yu Y, Zhao Z, Zhao W, Liu L. The ratio of Th-17 to Treg cells is associated with survival of patients with acute-on-chronic hepatitis B liver failure. Viral Immunol. 2011;24(4):303–10.

    Article  CAS  PubMed  Google Scholar 

  133. Shi F, Zhang JY, Zeng Z, Tien P, Wang FS. Skewed ratios between CD3(+) T cells and monocytes are associated with poor prognosis in patients with HBV-related acute-on-chronic liver failure. Biochem Biophys Res Commun. 2010;402(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang Z, Zou ZS, Fu JL, Cai L, Jin L, Liu YJ, Wang FS. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure. J Hepatol. 2008;49(3):396–406.

    Article  CAS  PubMed  Google Scholar 

  136. Zou Z, Li B, Xu D, Zhang Z, Zhao JM, Zhou G, et al. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol. 2009;43(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  137. Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral γδT cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol. 2012;32(4):877–85.

    Article  CAS  PubMed  Google Scholar 

  138. Farci P, Diaz G, Chen Z, Govindarajan S, Tice A, Agulto L, Pittaluga S, Boon D, Yu C, Engle RE, Haas M, Simon R, Purcell RH, Zamboni F. B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure. Proc Natl Acad Sci U S A. 2010;107(19):8766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang GL, Xie DY, Ye YN, Lin CS, Zhang XH, Zheng YB, Huang ZL, Peng L, Gao ZL. High level of IL-27 positively correlated with Th17 cells may indicate liver injury in patients infected with HBV. Liver Int. 2014;34(2):266–73.

    Article  PubMed  CAS  Google Scholar 

  140. Dong X, Gong Y, Zeng H, Hao Y, Wang X, Hou J, Wang J, Li J, Zhu Y, Liu H, Han J, Zhou H, Shen L, Gao T, Zhou T, Yang S, Li S, Chen Y, Meng Q, Li H. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int. 2013;33(10):1517–26.

    Article  CAS  PubMed  Google Scholar 

  141. Arshad MI, Piquet-Pellorce C, L’Helgoualc’h A, Rauch M, Patrat-Delon S, Ezan F, Lucas-Clerc C, Nabti S, Lehuen A, Cubero FJ, Girard JP, Trautwein C, Samson M. TRAIL but not FasL and TNFα, regulates IL-33 expression in murine hepatocytes during acute hepatitis. Hepatology. 2012;56(6):2353–62.

    Article  CAS  PubMed  Google Scholar 

  142. Sarin SK, Kedarisetty CK, Abbas Z, Amarapurkar D, Bihari C, Chan AC, Chawla YK, KadirDokmeci A, Garg H, Ghazinyan H, Hamid S, Kim DJ, Komolmit P, Lata S, Lee GH, Lesmana LA, Mahtab M, Maiwall R, Moreau R, Ning Q, Pamecha V, Payawal DA, Rastogi A, Rela SRM, Saraya A, Samuel D, Saraswat V, Shah S, Shiha G, Sharma BC, Sharma MK, Sharma K, Butt AS, Tan SS, Vashishtha C, Wani ZA, Yuen M-F, Yokosuka O, the APASL ACLF Working Party. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int. 2014;8:453–71.

    Article  PubMed  Google Scholar 

  143. Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology. 2012;55(3):965–7.

    Article  PubMed  Google Scholar 

  144. Organization Committee of 13th Asia-Pacific Congress of Clinical Microbiology and Infection. 13th Asia-Pacific Congress of Clinical Microbiology and Infection Consensus Guidelines for diagnosis and treatment of liver failure. Hepatobiliary Pancreat Dis Int. 2013;12(4):346–54.

    Article  Google Scholar 

  145. Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr Opin Crit Care. 2011;17(2):165–9.

    Article  PubMed  Google Scholar 

  146. Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, Gerbes A, Wendon J, Alessandria C, Laleman W, Zeuzem S, Trebicka J, Bernardi M, Arroyo V, CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37.

    Article  PubMed  Google Scholar 

  147. Qin N, Zhi C, Yuming W, Guanxin S. Acute exacerbation of chronic hepatitis B: Basic research and clinical management. 1st ed. Wuhan: Huazhong University of Science & Technology Press (HUST Press); 2013.

    Google Scholar 

  148. Malý MA, Tomasov P, Hájek P, Blasko P, Hrachovinová I, Salaj P, Veselka J. The role of tissue factor in thrombosis and hemostasis [J]. Physiol Res. 2007;56(6):685–95.

    Article  PubMed  Google Scholar 

  149. Ansell J. Factor Xa or thrombin: is factor Xa a better target? J Thromb Haemost. 2007;5(Suppl 1):60–4.

    Article  CAS  PubMed  Google Scholar 

  150. Butenas S, Mann KG. Blood coagulation. Biochemistry (Mosc). 2002;67(1):3–12.

    Article  CAS  Google Scholar 

  151. Morrissecy JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost. 2001;86(1):66–74.

    Google Scholar 

  152. Sakowicz A, Fendler W, Lelonek M, Gluba A, Pietrucha T. Two polymorphisms of FVII gene and their impact on the risk of myocardial infarction in poles under 45 years of age [J]. Mol Biol (Mosk). 2010;44(2):229–34.

    Article  CAS  Google Scholar 

  153. Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  154. Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006;208(3):327–39.

    Article  CAS  PubMed  Google Scholar 

  155. Boffa MB, Hamill JD, Maret D, Brown D, Scott ML, Nesheim ME, Koschinsky ML. Acute phase mediators modulate thrombin-activable fibrinolysis inhibitor (TAFI) gene expression in HepG2 cells. J Biol Chem. 2003;278(11):9250–7.

    Article  CAS  PubMed  Google Scholar 

  156. Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21(1):1–11.

    Article  PubMed  Google Scholar 

  157. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.

    Article  CAS  PubMed  Google Scholar 

  158. Sofi F, Cesari F, Fedi S, Abbate R, Gensini GF, Protein Z. “Light and shade” of a new thrombotic factor. Clin Lab. 2004;50(11–12):647–52.

    CAS  PubMed  Google Scholar 

  159. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129(3):307–21.

    Article  CAS  PubMed  Google Scholar 

  160. Greenberg DL, Davie EW. Blood coagulation factors: their complementary DNAs, genes and expression. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, editors. Hemostasis and thrombosis: basic principles and clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 21–57.

    Google Scholar 

  161. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376:190–201.

    Article  PubMed  Google Scholar 

  162. Kim TY, Kim DJ. Acute-on-chronic liver failure. Clin Mol Hepatol. 2013;19:349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang YM, Wang XH. Definition and classification of liver failure. Chinese J Pract Int Med. 2005;25(9):782–4. (in Chinese)

    CAS  Google Scholar 

  164. Panackel C, Thomas R, Sebastian B, Mathai SK. Recent advances in management of acute liver failure. Indian J Crit Care Med. 2015;19(1):27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Habib M, Roberts LN, Patel RK, Wendon J, Bernal W, Arya R. Evidence of rebalanced coagulation in acute liver injury and acute liver failure as measured by thrombin generation. Liver Int. 2014;34(5):672–8.

    Article  CAS  PubMed  Google Scholar 

  166. Munoz S, Rajender Reddy K, Lee W. The coagulopathy of acute liver failure and implications for intracranial pressure monitoring. Neurocrit Care. 2008;9(1):103–7.

    Article  PubMed  Google Scholar 

  167. Munoz SJ, Stravitz RT, Gabriel DA. Coagulopathy of acute liver failure. Clin Liver Dis. 2009;13(1):95–107.

    Article  PubMed  Google Scholar 

  168. Lisman T1, Caldwell SH, Burroughs AK, Northup PG, Senzolo M, Stravitz RT, Tripodi A, Trotter JF, Valla DC, Porte RJ. Coagulation in Liver Disease Study Group. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53(2):362–71.

    Article  PubMed  Google Scholar 

  169. Stravitz RT, Kramer AH, Davern T, Shaikh AO, Caldwell SH, Mehta RL, Blei AT, Fontana RJ, McGuire BM, Rossaro L, Smith AD, Lee WM. Acute Liver Failure Study Group. Intensive care of patients with acute liver failure: recommendations of the US. Crit Care Med. 2007;35(11):2498–508.

    Article  PubMed  Google Scholar 

  170. O’Grady J. Acute liver failure. Postgrad Med J. 2005;8(953):148–54.

    Article  Google Scholar 

  171. Stravitz RT. Critical management decision in patients with acute liver failure. Chest. 2008;134(5):1092–102.

    Article  PubMed  Google Scholar 

  172. Auzinger G, Wendon J. Intensive care management of acute liver failure. Curr Opin Crit Care. 2008;14(2):179–88.

    Article  PubMed  Google Scholar 

  173. Koyama T, Hall LR, Haser WG, Tonegawa S, Saito H. Structure of a cytotoxic T-lymphocyte-specific gene shows a strong homology to fibrinogen b and g chains. Proc Natl Acad Sci U S A. 1987;84(6):1609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Parr RL, Fung L, Reneker J, Myers-Mason N, Leibowitz JL, Levy G. Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J Virol. 1995;69(8):5033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chan CW, Chan MW, Liu M, Fung L, Cole EH, Leibowitz JL, Marsden PA, Clark DA, Levy GA. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity [J]. J Immunol. 2002;168(10):5170–7.

    Article  CAS  PubMed  Google Scholar 

  176. Qureshi ST, Clermont S, Leibowitz J, Fung LS, Levy G, Malo D. Mouse hepatitis virus-3 induced prothrombinase (Fg12) maps to proximal chromosome 5. Genomics. 1995;29(1):307–9.

    Article  CAS  PubMed  Google Scholar 

  177. Ding JW, Ning Q, Liu MF, Lai A, Leibowitz J, Peltekian KM, Cole EH, Fung LS, Holloway C, Marsden PA, Yeger H, Phillips MJ, Levy GA. Fulminant hepatic failure in murine hepatitis virus strain 3 infection: tissue-specific expression of a novel fgl2 prothrombinase. J Virol. 1997;71(12):9223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Marsden PA, Ning Q, Fung LS, Luo X, Chen Y, Mendicino M, Ghanekar A, Scott JA, Miller T, Chan CW, Chan MW, He W, Gorczynski RM, Grant DR, Clark DA, Phillips MJ, Levy GA. The Fgl2/fibroleukin prothrombinase contributes to immunologically mediated thrombosis in experimental and human viral hepatitis. J Clin Invest. 2003;112(1):58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yuwaraj S, Ding J, Liu M, Marsden PA, Levy GA. Genomic characterization, localization, and functional expression of FGL2, the human gene encoding fibroleukin: a novel human procoagulant. Genomics. 2001;71(3):330–8.

    Article  CAS  PubMed  Google Scholar 

  180. Zhu CL, Yan WM, Zhu F, Zhu YF, Xi D, Tian DY, Levy G, Luo XP, Ning Q. Fibrinogen-like protein 2 fibroleukin expression and its correlation with disease progression in murine hepatitis virus type 3-induced fulminant hepatitis and in patients with severe viral hepatitis B. World J Gastroenterol. 2005;11(44):6936–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ning Q, Liu M, Kongkham P, Lai MM, Marsden PA, Tseng J, Pereira B, Belyavskyi M, Leibowitz J, Phillips MJ, Levy G. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem. 1999;274(15):9930–6.

    Article  CAS  PubMed  Google Scholar 

  182. Ning Q, Lakatoo S, Liu M, Yang W, Wang Z, Phillips MJ, Levy GA. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4. J Biol Chem. 2003;278(18):15541–9.

    Article  CAS  PubMed  Google Scholar 

  183. Han M, Yan W, Guo W, Xi D, Zhou Y, Li W, Gao S, Liu M, Levy G, Luo X, Ning Q. Hepatitis B virus induced HFGl2 transcription is dependent on c-Ets-2 and MAPK signal pathway. J Biol Chem. 2008;283(11):32715–29.

    Article  CAS  PubMed  Google Scholar 

  184. Kerr R. New insights into haemostasis in liver failure. Blood Coagul Fibrinolysis. 2003;14(Suppl 1):S43–5.

    Article  CAS  PubMed  Google Scholar 

  185. Elinav E, Ben-Dov I, Hai-Am E, Ackerman Z, Ofran Y. The predictive value of admission and follow up factor V and VII levels in patients with acute hepatitis and coagulopathy. J Hepatol. 2005;42(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  186. Hollestelle MJ, Geertzen HG, Straatsburg IH, van Gulik TM, van Mourik JA. Factor VIII expression in liver disease. Thromb Haemost. 2004;91(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  187. Sarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J Biol Chem. 2001;276(15):11970–9.

    Article  CAS  PubMed  Google Scholar 

  188. Mueller MM, Bomke B, Seifried E. Fresh frozen plasma in patients with disseminated intravascular coagulation or in patients with liver diseases. Thromb Res. 2002;107(Suppl 1):S9–S17.

    Article  CAS  PubMed  Google Scholar 

  189. Ferro D, Quintarelli C, Lattuada A, Leo R, Alessandroni M, Mannucci PM, Violi F. High plasma levels of von Willebrand factor as a marker of endothelial perturbation in cirrhosis: relationship to endotoxemia. Hepatology. 1996;23(6):1377–83.

    Article  CAS  PubMed  Google Scholar 

  190. Baruch Y, Neubauer K, Ritzel A, Wilfling T, Lorf T, Ramadori G. Von Willebrand gene expression in damaged human liver. Hepato-Gastroenterology. 2004;51(57):684–8.

    CAS  PubMed  Google Scholar 

  191. Lechner K, Niessner H, Thaler E. Coagulation abnormalities in liver disease. Semin Thromb Haemost. 1977;4(1):40–56.

    Article  CAS  Google Scholar 

  192. Francis JL, Armstrong DJ. Fibrinogen-bound sialic acid levels in the dysfibrinogenaemia of liver disease. Haemostasis. 1982;11(4):215–22.

    CAS  PubMed  Google Scholar 

  193. Mannucci PM, Vigano S. Deficiencies of protein C, an inhibitor of blood coagulation. Lancet. 1982;2(8296):463–7.

    Article  CAS  PubMed  Google Scholar 

  194. Primignani M, Martinelli I, Bucciarelli P, Battaglioli T, Reati R, Fabris F, Dell’era A, Pappalardo E, Mannucci PM. Risk factors for thrombophilia in extrahepatic portal vein obstruction. Hepatology. 2005;41(3):603–8.

    Article  CAS  PubMed  Google Scholar 

  195. Minnema MC, Janssen HL, Niermeijer P, de Man RA. Budd-Chiari syndrome: combination of genetic defects and the use of oral contraceptives leading to hypercoagulability [J]. J Hepatol. 2000;33(3):509–12.

    Article  CAS  PubMed  Google Scholar 

  196. Bhattacharyya M, Makharia G, Kannan M, Ahmed RP, Gupta PK, Saxena R. Inherited prothrombotic defects in Budd-Chiari syndrome and portal vein thrombosis: a study from North India. Am J Clin Pathol. 2004;121(6):844–7.

    Article  PubMed  Google Scholar 

  197. Schipper HG, ten Cate JW. Antithrombin III transfusion in patients with hepatic cirrhosis. Br J Haematol. 1982;52(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  198. Lisman T, Leebeek F. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment. Dig Surg. 2007;24(4):250–8.

    Article  PubMed  Google Scholar 

  199. Hersch SL, Kunelis T, Francis RB Jr. The pathogenesis of accelerated fibrinolysis in liver cirrhosis: a critical role for tissue plasminogen activator inhibitor. Blood. 1987;69(5):1315–9.

    Article  CAS  PubMed  Google Scholar 

  200. Pernambuco JR, Langley PG, Hughes RD, Izumi S, Williams R. Activation of the fibrinolytic system in patients with fulminant liver failure. Hepatology. 1993;18(6):1350–6.

    Article  CAS  PubMed  Google Scholar 

  201. Wang W, Boffa MB, Bajzar L, Walker JB, Nesheim ME. A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activatable fibrinolysis inhibitor [J]. J Biol Chem. 1998;273(42):27176–81.

    Article  CAS  PubMed  Google Scholar 

  202. Nesheim M, Bajzar L. The discovery of TAFI. J Thromb Haemost. 2005;3(10):2139–46.

    Article  CAS  PubMed  Google Scholar 

  203. Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of ‘hypersplenic’ thrombocytopenia. J Clin Invest. 1966;45(5):645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Goulis J, Chau TN, Jordan S, Mehta AB, Watkinson A, Rolles K, Burroughs AK. Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut. 1999;44(5):754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kajihara M, Kato S, Okazaki Y, Kawakami Y, Ishii H, Ikeda Y, Kuwana M. A role of autoantibody-mediated platelet destruction in thrombocytopenia in patients with cirrhosis. Hepatology. 2003;37(6):1267–76.

    Article  CAS  PubMed  Google Scholar 

  206. Ben Ari Z, Osman E, Hutton RA, Burroughs AK. Disseminated intravascular coagulation in liver cirrhosis: fact or fiction? Am J Gastroenterol. 1999;94(10):2977–82.

    Article  CAS  PubMed  Google Scholar 

  207. Levine RF, Spivak JL, Meagher RC, Sieber F. Effect of ethanol on thrombopoiesis. Br J Haematol. 1986;62(2):345–54.

    Article  CAS  PubMed  Google Scholar 

  208. Kitano K, Shimodaira S, Ito T, Ichikawa N, Kodaira H, Kohara Y, Ueno M, Tahara T, Kato T, Ishida F, Kiyosawa K. Liver cirrhosis with marked thrombocytopenia and highly elevated serum thrombopoietin levels. Int J Hematol. 1999;70(1):52–5.

    CAS  PubMed  Google Scholar 

  209. Escolar G, Cases A, Vinas M, Pino M, Calls J, Cirera I, Ordinas A. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica. 1999;84(7):614–9.

    CAS  PubMed  Google Scholar 

  210. Laffi G, Marra F, Gresele P, Romagnoli P, Palermo A, Bartolini O, Simoni A, Orlandi L, Selli ML, Nenci GG. Evidence for a storage pool defect in platelets from cirrhotic patients with defective aggregation. Gastroenterology. 1992;103(2):641–6.

    Article  CAS  PubMed  Google Scholar 

  211. Laffi G, Marra F, Failli P, Ruggiero M, Cecchi E, Carloni V, Giotti A, Gentilini P. Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology. 1993;105(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  212. Laffi G, Cominelli F, Ruggiero M, Fedi S, Chiarugi VP, La Villa G, Pinzani M, Gentilini P. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology. 1988;8(6):1620–6.

    Article  CAS  PubMed  Google Scholar 

  213. Pasche B, Ouimet H, Francis S, Loscalzo J. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83:404–14.

    Article  CAS  PubMed  Google Scholar 

  214. Desai K, Mistry P, Bagget C, Burroughs AK, Bellamy MF, Owen JS. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet. 1989;1(8640):693–5.

    Article  CAS  PubMed  Google Scholar 

  215. Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res. 1975;9(3):335–44.

    Article  CAS  PubMed  Google Scholar 

  216. Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther. 2001;89(3):273–93.

    Article  CAS  PubMed  Google Scholar 

  217. Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, Leebeek FW. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  218. Kujovich JL. Hemostatic defects in end stage liver disease. Crit Care Clin. 2005;21(3):563–87.

    Article  PubMed  Google Scholar 

  219. Bakker CM, Knot EA, Stibbe J, Wilson JH. Disseminated intravascular coagulation in liver cirrhosis. J Hepatol. 1992;15(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  220. Kemkes-Matthes B, Bleyl H, Matthes KJ. Coagulation activation in liver diseases. Thromb Res. 1991;64(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  221. Carr JM. Disseminated intravascular coagulation in cirrhosis. Hepatology. 1989;10(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  222. Harmon DC, Demirjian Z, Ellman L, Fischer JE. Disseminated intravascular coagulation with the peritoneovenous shunt. Ann Intern Med. 1979;90(5):774–6.

    Article  CAS  PubMed  Google Scholar 

  223. Gao S, Wang M, Ye H, Guo J, Xi D, Wang Z, Zhu C, Yan W, Luo X, Ning Q. Dual interference with novel genes mfgl2 and mTNFR1 ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther. 2010;21(8):969–77.

    Article  CAS  PubMed  Google Scholar 

  224. Xi D, Wang M, Ye H, Luo X, Ning Q. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice. PLoS One. 2013;8(11):e82330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Zhu C, Sun Y, Luo X, Yan W, Xi D, Ning Q. Novel mfgl2 antisense plasmid inhibits murine fgl2 expression and ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ Mice. Hum Gene Ther. 2006;17(6):589–600.

    Article  CAS  PubMed  Google Scholar 

  226. Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, de Silva HJ, Hamid SS, Jalan R, Komolmit P, Lau GK, Liu Q, Madan K, Mohamed R, Ning Q, Rahman S, Rastogi A, Riordan SM, Sakhuja P, Samuel D, Shah S, Sharma BC, Sharma P, Takikawa Y, Thapa BR, Wai CT, Yuen MF. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.

    Article  PubMed  Google Scholar 

  227. Borowski M, Furie BC, Bauminger S, Furie B. Prothrombin requires two sequential metal-dependent conformational transitions to bind phospholipid. Conformation-specific antibodies directed against the phospholipid-binding site on prothrombin. J Biol Chem. 1986;261(32):14969–75.

    Article  CAS  PubMed  Google Scholar 

  228. Shearer MJ. Vitamin K. Lancet. 1995;345(8944):229–34.

    Article  CAS  PubMed  Google Scholar 

  229. Pereira SP, Rowbotham D, Fitt S, Shearer MJ, Wendon J, Williams R. Pharmacokinetics and efficacy of oral versus intravenous mixed-micellar phylloquinone (vitamin K1) in severe acute liver disease. J Hepatol. 2005;42(3):365–70.

    Article  CAS  PubMed  Google Scholar 

  230. Han MLK, Hyzy R. Advances in critical care management of hepatic failure. Crit Care Med. 2006;34(9 Suppl):S225–31.

    Article  PubMed  Google Scholar 

  231. Kaul VV, Munoz SJ. Coagulopathy of liver disease. Curr Treat Options Gastroenterol. 2000;3(6):433–8.

    Article  CAS  PubMed  Google Scholar 

  232. O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, Williamson LM. British Committee for Standards in Haematology, Blood Transfusion Task Force. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126(1):11–28.

    Article  PubMed  Google Scholar 

  233. Grant A, Neuberger J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut. 1999;45(Suppl 4):IV1–IV11.

    PubMed  PubMed Central  Google Scholar 

  234. Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first twenty years. Haemophilia. 2000;6(Suppl 1):60–7.

    Article  PubMed  Google Scholar 

  235. de Franchis R, Arcidiacono PG, Carpinelli L, Andreoni B, Cestari L, Brunati S, Zambelli A, Battaglia G, Mannucci PM. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study, new Italian endoscopic club. Hepatology. 1993;18(5):1102–7.

    Article  PubMed  Google Scholar 

  236. Wong AY, Irwin MG, Hui TW, Fung SK, Fan ST, Ma ES. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can J Anaesth. 2003;50(1):14–20.

    Article  PubMed  Google Scholar 

  237. Sue M, Caldwell SH, Dickson RC, Macalindong C, Rourk RM, Charles C, Doobay R, Cambridge SL, Barritt AS, McCallum RW. Variation between centers in technique and guidelines for liver biopsy. Liver. 1996;16(4):267–70.

    Article  CAS  PubMed  Google Scholar 

  238. Gangireddy VG, Kanneganti PC, Sridhar S, Talla S, Coleman T. Management of thrombocytopenia in advanced liver disease. Can J Gastroenterol Hepatol. 2014;28(10):558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hu KQ, Yu AS, Tiyyagura L, Redeker AG, Reynolds TB. Hyperfibrinolytic activity in hospitalized cirrhotic patients in a referral liver unit. Am J Gastroenterol. 2001;96(5):1581–6.

    Article  CAS  PubMed  Google Scholar 

  240. Kahl BS, Schwartz BS, Mosher DF. Profound imbalance of pro-fibrinolytic and anti-fibrinolytic factors (tissue plasminogen activator and plasminogen activator inhibitor type 1) and severe bleeding diathesis in a patient with cirrhosis: correction by liver transplantation. Blood Coagul Fibrinolysis. 2003;14(8):741–4.

    Article  PubMed  Google Scholar 

  241. Hedner U. Dosing with recombinant factor VIIa based on current evidence. Semin Hematol. 2004;41(1 Suppl 1):35–9.

    Article  CAS  PubMed  Google Scholar 

  242. Ejlersen E, Melsen T, Ingerslev J, Andreasen RB, Vilstrup H. Recombinant activated factor VII (rFVIIa) acutely normalizes prothrombin time in patients with cirrhosis during bleeding from oesophageal varices. Scand J Gastroenterol. 2001;36(10):1081–5.

    Article  CAS  PubMed  Google Scholar 

  243. O’Connell KA, Wood JJ, Wise RP, Lozier JN, Braun MM. Thromboembolic adverse events after use of recombinant human coagulation factor VIIa. JAMA. 2006;295(3):293–8.

    Article  PubMed  Google Scholar 

  244. Lai CL, Ratziu V, Yuen MF, Poynard T. Viral hepatitis B. Lancet. 2003;362(9401):2089–94.

    Article  CAS  PubMed  Google Scholar 

  245. Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol. 2006;1:23–61.

    Article  CAS  PubMed  Google Scholar 

  246. Xu D, Fu J, Jin L, Zhang H, Zhou C, Zou Z, Zhao JM, Zhang B, Shi M, Ding X, Tang Z, Fu YX, Wang FS. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol. 2006;177(1):739–47.

    Article  CAS  PubMed  Google Scholar 

  247. Hou JL, Lai W, Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. The guideline of prevention and treatment for chronic hepatitis B: a 2015 update. Zhonghua Gan Zang Bing Za Zhi. 2015;23(12):888–905. (Article in Chinese)

    CAS  PubMed  Google Scholar 

  248. European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol. 2012;57(1):167–85.

    Article  Google Scholar 

  249. Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, Chen DS, Chen HL, Chen PJ, Chien RN, Dokmeci AK, Gane E, Hou JL, Jafri W, Jia J, Kim JH, Lai CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab M, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang FS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int. 2016;10(1):1–98.

    Article  CAS  PubMed  Google Scholar 

  250. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH, American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–83.

    Article  PubMed  Google Scholar 

  251. Op den Brouw ML, Binda RS, van Roosmalen MH, Protzer U, Janssen HL, van der Molen RG, Woltman AM. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology. 2009;126(2):280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lang T, Lo C, Skinner N, Locarnini S, Visvanathan K, Mansell A. The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway. J Hepatol. 2011;55(4):762–9.

    Article  CAS  PubMed  Google Scholar 

  253. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G, Bertoletti A, Ferrari C. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Honkoop P, de Man RA, Niesters HG, Zondervan PE, Schalm SW. Acute exacerbation of chronic hepatitis B virus infection after withdrawal of lamivudine therapy. Hepatology. 2000;32(3):635–9.

    Article  CAS  PubMed  Google Scholar 

  255. Liaw YF. Hepatitis flares and hepatitis B e antigen seroconversion: implication in anti-hepatitis B virus therapy. J Gastroenterol Hepatol. 2003;18(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  256. Papatheodoridis GV, Dimou E, Papadimitropoulos V. Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol. 2002;97(7):1618–28.

    Article  CAS  PubMed  Google Scholar 

  257. Lim SG, Wai CT, Rajnakova A, Kajiji T, Guan R. Fatal hepatitis B reactivation following discontinuation of nucleoside analogues for chronic hepatitis B. Gut. 2002;51(4):597–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jeng WJ, Sheen IS, Chen YC, Hsu CW, Chien RN, Chu CM, Liaw YF. Off-therapy durability of response to entecavir therapy in hepatitis B e antigen-negative chronic hepatitis B patients. Hepatology. 2013;58(6):1888–96.

    Article  CAS  PubMed  Google Scholar 

  259. Li X, Wang Y, Chen Y. Cellular immune response in patients with chronic hepatitis B virus infection. Microb Pathog. 2014;74:59–62.

    Article  CAS  PubMed  Google Scholar 

  260. Duan XZ, Zhuang H, Wang M, Li HW, Liu JC, Wang FS. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroenterol Hepatol. 2005;20(2):234–42.

    Article  PubMed  Google Scholar 

  261. Ma YJ, He M, Han JA, Yang L, Ji XY. A clinical study of HBsAg-activated dendritic cells and cytokine-induced killer cells during the treatment for chronic hepatitis B. Scand J Immunol. 2013;78(4):387–93.

    Article  CAS  PubMed  Google Scholar 

  262. Sun HH, Zhou DF, Zhou JY. The role of DCs in the immunopathogenesis of chronic HBV infection and the methods of inducing DCs maturation. J Med Virol. 2016;88(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  263. Tavakoli S, Mederacke I, Herzog-Hauff S, Glebe D, Grün S, Strand D, Urban S, Gehring A, Galle PR, Böcher WO. Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection. Clin Exp Immunol. 2008;151(1):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HL. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One. 2011;6(1):e15324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Xu Y, Hu Y, Shi B, Zhang X, Wang J, Zhang Z, Shen F, Zhang Q, Sun S, Yuan Z. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol. 2009;46(13):2640–6.

    Article  CAS  PubMed  Google Scholar 

  266. Martinet J, Dufeu-Duchesne T, Bruder Costa J, Larrat S, Marlu A, Leroy V, Plumas J, Aspord C. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology. 2012;143(6):1586–1596.e8.

    Article  CAS  PubMed  Google Scholar 

  267. Untergasser A, Zedler U, Langenkamp A, Hösel M, Quasdorff M, Esser K, Dienes HP, Tappertzhofen B, Kolanus W, Protzer U. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology. 2006;43(3):539–47.

    Article  CAS  PubMed  Google Scholar 

  268. Wang K, Fan X, Fan Y, Wang B, Han L, Hou Y. Study on the function of circulating plasmacytoid dendritic cells in the immunoactive phase of patients with chronic genotype B and C HBV infection. J Viral Hepat. 2007;14(4):276–82.

    Article  CAS  PubMed  Google Scholar 

  269. Li N, Li Q, Qian Z, Zhang Y, Chen M, Shi G. Impaired TLR3/IFN-beta signaling in monocyte-derived dendritic cells from patients with acute-on-chronic hepatitis B liver failure: relevance to the severity of liver damage. Biochem Biophys Res Commun. 2009;390(3):630–5.

    Article  CAS  PubMed  Google Scholar 

  270. Duan XZ, Wang M, Li HW, Zhuang H, Xu D, Wang FS. Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol. 2004;24(6):637–46.

    Article  CAS  PubMed  Google Scholar 

  271. van der Molen RG, Sprengers D, Biesta PJ, Kusters JG, Janssen HL. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology. 2006;44(4):907–14.

    Article  PubMed  CAS  Google Scholar 

  272. Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T, Hiraide H. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev. 2000;174:35–46.

    Article  CAS  PubMed  Google Scholar 

  273. Kärre K. Natural killer cell recognition of missing self. Nat Immunol. 2008;9(5):477–80.

    Article  PubMed  CAS  Google Scholar 

  274. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med. 2000;192(7):921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, Humphreys E, Afford S, Adams DH, Bertoletti A, Maini MK. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204(3):667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL, Chisari FV, Guidotti LG. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med. 2001;194(12):1755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology. 2000;32(5):1117–24.

    Article  CAS  PubMed  Google Scholar 

  278. Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Missale G, Ferrari C. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut. 2009;58(7):974–82.

    Article  CAS  PubMed  Google Scholar 

  279. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996;4(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  280. Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, Mavilio D, De Filippi F, Bruno S, Mondelli MU. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology. 2009;137(3):1151–60, 1160.e1–7.

    Article  CAS  Google Scholar 

  281. Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int. 2012;32(3):370–82.

    CAS  PubMed  Google Scholar 

  282. Zhang Z, Zhang S, Zou Z, Shi J, Zhao J, Fan R, Qin E, Li B, Li Z, Xu X, Fu J, Zhang J, Gao B, Tian Z, Wang FS. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology. 2011;53(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  283. Micco L, Peppa D, Loggi E, Schurich A, Jefferson L, Cursaro C, Panno AM, Bernardi M, Brander C, Bihl F, Andreone P, Maini MK. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J Hepatol. 2013;58(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  284. Tan AT, Hoang LT, Chin D, Rasmussen E, Lopatin U, Hart S, Bitter H, Chu T, Gruenbaum L, Ravindran P, Zhong H, Gane E, Lim SG, Chow WC, Chen PJ, Petric R, Bertoletti A, Hibberd ML. Reduction of HBV replication prolongs the early immunological response to IFNα therapy. J Hepatol. 2014;60(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  285. Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol. 2011;54(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  286. Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, Pallant C, Ellis G, Khanna P, Dusheiko G, Gilson RJ, Maini MK. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Tjwa ET, Zoutendijk R, van Oord GW, Boeijen LL, Reijnders JG, van Campenhout MJ, de Knegt RJ, Janssen HL, Woltman AM, Boonstra A. Similar frequencies, phenotype and activation status of intrahepatic NK cells in chronic HBV patients after long-term treatment with tenofovir disoproxil fumarate (TDF). Antiviral Res. 2016;132:70–5.

    Article  CAS  PubMed  Google Scholar 

  288. Diao H, He J, Zheng Q, Chen J, Cui G, Wei Y, Ye P, Kohanawa M, Li L. A possible role for NKT-like cells in patients with chronic hepatitis B during telbivudine treatment. Immunol Lett. 2014;160(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  289. Wu J, Lu M, Meng Z, Trippler M, Broering R, Szczeponek A, Krux F, Dittmer U, Roggendorf M, Gerken G, Schlaak JF. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology. 2007;46(6):1769–78.

    Article  CAS  PubMed  Google Scholar 

  290. Guo H, Jiang D, Ma D, Chang J, Dougherty AM, Cuconati A, Block TM, Guo JT. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol. 2009;83(2):847–58.

    Article  CAS  PubMed  Google Scholar 

  291. Ma Z, Zhang E, Yang D, Lu M. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol. 2015;12(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  292. Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, Rodgers S, Kurtovic J, Chang J, Lewin S, Desmond P, Locarnini S. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  293. Wu J, Meng Z, Jiang M, Pei R, Trippler M, Broering R, Bucchi A, Sowa JP, Dittmer U, Yang D, Roggendorf M, Gerken G, Lu M, Schlaak JF. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology. 2009;49(4):1132–40.

    Article  CAS  PubMed  Google Scholar 

  294. Huang YW, Lin SC, Wei SC, Hu JT, Chang HY, Huang SH, Chen DS, Chen PJ, Hsu PN, Yang SS, Kao JH. Reduced Toll-like receptor 3 expression in chronic hepatitis B patients and its restoration by interferon therapy. Antivir Ther. 2013;18(7):877–84.

    Article  CAS  PubMed  Google Scholar 

  295. Huang YW, Hsu CK, Lin SC, Wei SC, Hu JT, Chang HY, Liang CW, Chen DS, Chen PJ, Hsu PN, Yang SS, Kao JH. Reduced toll-like receptor 9 expression on peripheral CD14+ monocytes of chronic hepatitis B patients and its restoration by effective therapy. Antivir Ther. 2014;19(7):637–43.

    Article  CAS  PubMed  Google Scholar 

  296. Yan W, Wu D, Wang X, Chen T, Lai Q, Zheng Q, Jiang J, Hou J, Han M, Ning Q. Upregulation of NKG2C+ natural killer cells, TLR-2 expression on monocytes and downregulation of regulatory T-cells influence PEG-IFN treatment efficacy in entecavir-suppressed patients with CHB. Antivir Ther. 2015;20(6):591–602.

    Article  CAS  PubMed  Google Scholar 

  297. Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G, Halcomb RL, Tumas DB. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144(7):1508–17, 1517.e1–10

    Article  CAS  PubMed  Google Scholar 

  298. Steuer HM, Daffis S, Lehar SM, Palazzo A, Tharinger H, Frey C, Pflanz S, Niu C, Chang CY, Jin MQ, Chen VL, Delaney WE, Peiser L, Fletcher SP, Nguyen MH. Functional activation of NK and CD8+ T cells in vitro by the toll-like receptor 7 agonist GS-9620. Hepatology. 2015;62:1187A.

    Article  Google Scholar 

  299. Lu X, Xu Q, Bu X, Ma X, Zhang F, Deng Q, Zhang Y, Ding J. Relationship between expression of toll-like receptors 2/4 in dendritic cells and chronic hepatitis B virus infection. Int J Clin Exp Pathol. 2014;7(9):6048–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Li M, Sun R, Xu L, Yin W, Chen Y, Zheng X, Lian Z, Wei H, Tian Z. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen-TLR2 interactions in mice. J Immunol. 2015;195(7):3100–9.

    Article  CAS  PubMed  Google Scholar 

  301. Chen J, Wang XM, Wu XJ, Wang Y, Zhao H, Shen B, Wang GQ. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B. Inflamm Res. 2011;60(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  302. Jiang M, Broering R, Trippler M, Poggenpohl L, Fiedler M, Gerken G, Lu M, Schlaak JF. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J Viral Hepat. 2014;21(12):860–72.

    Article  CAS  PubMed  Google Scholar 

  303. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol. 1995;13:29–60.

    Article  CAS  PubMed  Google Scholar 

  304. Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Liu XY, Shi F, Zhao H, Wang HF. Research of PD-1 expression in CD8+ T cell of peripheral blood with HBV-associated acute-on-chronic liver failure. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2010;24(2):125–7. [Article in Chinese]

    PubMed  Google Scholar 

  306. Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963–70.

    Article  CAS  PubMed  Google Scholar 

  307. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  308. Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV. CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol. 2010;184(1):287–95.

    Article  CAS  PubMed  Google Scholar 

  309. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284(5415):825–9.

    Article  CAS  PubMed  Google Scholar 

  310. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581–92.

    Article  CAS  PubMed  Google Scholar 

  311. Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis. 2011;29(4):423e33.

    Article  Google Scholar 

  312. Zhang Z, Zhang JY, Wang LF, Wang FS. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2012;27(2):223–30.

    Article  PubMed  CAS  Google Scholar 

  313. Webster GJ, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, Williams R, Dusheiko G, Bertoletti A. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol. 2004;78(11):5707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, King AS, Herberg J, Gilson R, Alisa A, Williams R, Vergani D, Naoumov NV, Ferrari C, Bertoletti A. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med. 2000;191(8):1269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Evans A, Riva A, Cooksley H, Phillips S, Puranik S, Nathwani A, Brett S, Chokshi S, Naoumov NV. Programmed death 1 expression during antiviral treatment of chronic hepatitis B: Impact of hepatitis B e-antigen seroconversion. Hepatology. 2008;48(3):759–69.

    Article  PubMed  Google Scholar 

  316. Chen Y, Li X, Ye B, Yang X, Wu W, Chen B, Pan X, Cao H, Li L. Effect of telbivudine therapy on the cellular immune response in chronic hepatitis B. Antiviral Res. 2011;91(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  317. Li Y, Ma S, Tang L, Li Y, Wang W, Huang X, Lai Q, Zhang M, Sun J, Li CK, Abbott WG, Naoumov NV, Zhang Y, Hou J. Circulating chemokine (C-X-C Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen seroconversion through IL-21 in patients with chronic hepatitis B virus infection. Hepatology. 2013;58(4):1277–86.

    Article  CAS  PubMed  Google Scholar 

  318. Boni C, Laccabue D, Lampertico P, Giuberti T, Viganò M, Schivazappa S, Alfieri A, Pesci M, Gaeta GB, Brancaccio G, Colombo M, Missale G, Ferrari C. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology. 2012;143(4):963–73. e9

    Article  CAS  PubMed  Google Scholar 

  319. Tan AT, Koh S, Goh W, Zhe HY, Gehring AJ, Lim SG, Bertoletti A. A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B. J Hepatol. 2010;52(3):330–9.

    Article  CAS  PubMed  Google Scholar 

  320. Boni C, Penna A, Bertoletti A, Lamonaca V, Rapti I, Missale G, Pilli M, Urbani S, Cavalli A, Cerioni S, Panebianco R, Jenkins J, Ferrari C. Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B. J Hepatol. 2003;39(4):595–605.

    Article  CAS  PubMed  Google Scholar 

  321. Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut. 2012;61(12):1754–64.

    Article  CAS  PubMed  Google Scholar 

  322. Vandepapelière P, Lau GK, Leroux-Roels G, Horsmans Y, Gane E, Tawandee T, Merican MI, Win KM, Trepo C, Cooksley G, Wettendorff M, Ferrari C. Therapeutic HBV Vaccine Group of Investigators. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine. 2007;25(51):8585–97.

    Article  PubMed  CAS  Google Scholar 

  323. Rigopoulou EI, Suri D, Chokshi S, Mullerova I, Rice S, Tedder RS, Williams R, Naoumov NV. Lamivudine plus interleukin-12 combination therapy in chronic hepatitis B: antiviral and immunological activity. Hepatology. 2005;42(5):1028–36.

    Article  CAS  PubMed  Google Scholar 

  324. Penna A, Laccabue D, Libri I, Giuberti T, Schivazappa S, Alfieri A, Mori C, Canetti D, Lampertico P, Viganò M, Colombo M, Loggi E, Missale G, Ferrari C. Peginterferon-α does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J Hepatol. 2012;56(6):1239–46.

    Article  CAS  PubMed  Google Scholar 

  325. Sprengers D, Stoop JN, Binda RS, Kusters JG, Haagmans BL, Carotenuto P, Artsen A, van der Molen RG, Janssen HL. Induction of regulatory T-cells and interleukin-10-producing cells in non-responders to pegylated interferon-alpha therapy for chronic hepatitis B. Antivir Ther. 2007;12(7):1087–96.

    CAS  PubMed  Google Scholar 

  326. Carotenuto P, Artsen A, Niesters HG, Osterhaus AD, Pontesilli O. In vitro use of autologous dendritic cells improves detection of T cell responses to hepatitis B virus (HBV) antigens. J Med Virol. 2009;81(2):332–9.

    Article  PubMed  Google Scholar 

  327. Rossol S, Marinos G, Carucci P, Singer MV, Williams R, Naoumov NV. Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest. 1997;99(12):3025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Rehermann B, Lau D, Hoofnagle JH, Chisari FV. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest. 1996;97(7):1655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  CAS  PubMed  Google Scholar 

  330. Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest. 2004;114(9):1198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol. 2004;25(7):374–80.

    Article  CAS  PubMed  Google Scholar 

  332. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG, Janssen HL. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005;41(4):771–8.

    Article  CAS  PubMed  Google Scholar 

  334. Li X, Chen Y, Ma Z, Ye B, Wu W, Li L. Effect of regulatory T cells and adherent cells on the expansion of HBcAg-specific CD8+ T cells in patients with chronic hepatitis B virus infection. Cell Immunol. 2010;264(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  335. Ma H, Zhang HH, Wei L. Frequency of T-cell FoxP3+ Treg and CD4+/CD8+ PD-1 expression is related to HBeAg seroconversion in hepatitis B patients on pegylated interferon. Chin Med J (Engl). 2013;126(2):267–73.

    CAS  Google Scholar 

  336. Yang G, Liu A, Xie Q, Guo TB, Wan B, Zhou B, Zhang JZ. Association of CD4+CD25+Foxp3+ regulatory T cells with chronic activity and viral clearance in patients with hepatitis B. Int Immunol. 2007;19(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  337. Stoop JN, van der Molen RG, Kuipers EJ, Kusters JG, Janssen HL. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B. Virology. 2007;361(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  338. Feng IC, Koay LB, Sheu MJ, Kuo HT, Sun CS, Lee C, Chuang WL, Liao SK, Wang SL, Tang LY, Cheng CJ, Tsai SL. HBcAg-specific CD4+CD25+ regulatory T cells modulate immune tolerance and acute exacerbation on the natural history of chronic hepatitis B virus infection. J Biomed Sci. 2007;14(1):43–57.

    Article  CAS  PubMed  Google Scholar 

  339. Kondo Y, Kobayashi K, Ueno Y, Shiina M, Niitsuma H, Kanno N, Kobayashi T, Shimosegawa T. Mechanism of T cell hyporesponsiveness to HBcAg is associated with regulatory T cells in chronic hepatitis B. World J Gastroenterol. 2006;12(27):4310–7.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Koay LB, Feng IC, Sheu MJ, Kuo HT, Lin CY, Chen JJ, Wang SL, Tang LY, Tsai SL. Hepatitis B virus (HBV) core antigen-specific regulatory T cells confer sustained remission to anti-HBV therapy in chronic hepatitis B with acute exacerbation. Hum Immunol. 2011;72(9):687–98.

    Article  CAS  PubMed  Google Scholar 

  341. Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, Robek MD. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology. 2011;141(5):1897–906.

    Article  CAS  PubMed  Google Scholar 

  342. Niu Y, Liu H, Yin D, Yi R, Chen T, Xue H, Zhang S, Lin S, Zhao Y. The balance between intrahepatic IL-17(+) T cells and Foxp3(+) regulatory T cells plays an important role in HBV-related end-stage liver disease. BMC Immunol. 2011;12:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Wang ML, Zhou QL, Chen EQ, Du LY, Yan LB, Bai L, He M, Tang H. Low ratio of Treg to Th17 cells after 36 weeks of telbivudine therapy predict HBeAg seroconversion. Viral Immunol. 2016;29(6):332–42.

    Article  CAS  PubMed  Google Scholar 

  344. Zhang JY, Song CH, Shi F, Zhang Z, Fu JL, Wang FS. Decreased ratio of Treg cells to Th17 cells correlates with HBV DNA suppression in chronic hepatitis B patients undergoing entecavir treatment. PLoS One. 2010;5(11):e13869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  345. Feng J, Lu L, Hua C, Qin L, Zhao P, Wang J, Wang Y, Li W, Shi X, Jiang Y. High frequency of CD4+ CXCR5+ TFH cells in patients with immune-active chronic hepatitis B. PLoS One. 2011;6(7):e21698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Gimson AE, Tedder RS, White YS, Eddleston AL, Williams R. Serological markers in fulminant hepatitis B. Gut. 1983;24(7):615–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Trepo CG, Robert D, Motin J, Trepo D, Sepetjian M, Prince AM. Hepatitis B antigen (HBSAg) and/or antibodies (anti-HBS and anti-HBC) in fulminant hepatitis: pathogenic and prognostic significance. Gut. 1976;17(1):10–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Lin FC, Young HA. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25(4):369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–93.

    Article  CAS  PubMed  Google Scholar 

  350. Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2002;2(9):675–87.

    Article  CAS  PubMed  Google Scholar 

  351. Guidotti LG, Morris A, Mendez H, Koch R, Silverman RH, Williams BR, Chisari FV. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol. 2002;76(6):2617–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M, Levrero M. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122(2):529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343(6176):1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Pei RJ, Chen XW, Lu MJ. Control of hepatitis B virus replication by interferons and Toll-like receptor signaling pathways. World J Gastroenterol. 2014;20(33):11618–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  356. Cooksley H, Chokshi S, Maayan Y, Wedemeyer H, Andreone P, Gilson R, Warnes T, Paganin S, Zoulim F, Frederick D, Neumann AU, Brosgart CL, Naoumov NV. Hepatitis B virus e antigen loss during adefovir dipivoxil therapy is associated with enhanced virus-specific CD4+ T-cell reactivity. Antimicrob Agents Chemother. 2008;52(1):312–20.

    Article  CAS  PubMed  Google Scholar 

  357. Jiang Y, Li W, Yu L, Liu J, Xin G, Yan H, Sun P, Zhang H, Xu D, Niu J. Enhancing the antihepatitis B virus immune response by adefovir dipivoxil and entecavir therapies. Cell Mol Immunol. 2011;8(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  358. Zou Z, Li B, Xu D, Zhang Z, Zhao JM, Zhou G, Sun Y, Huang L, Fu J, Yang Y, Jin L, Zhang W, Zhao J, Sun Y, Xin S, Wang FS. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol. 2009;43(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  359. Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Postgrad Med J. 2013;89(1051):294–304.

    Article  CAS  PubMed  Google Scholar 

  360. Puro R, Schneider RJ. Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA. J Virol. 2007;81(14):7351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-alpha blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol. 2015;12(3):317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Xia Y, Stadler D, Lucifora J, Reisinger F, Webb D, Hösel M, Michler T, Wisskirchen K, Cheng X, Zhang K, Chou WM, Wettengel JM, Malo A, Bohne F, Hoffmann D, Eyer F, Thimme R, Falk CS, Thasler WE, Heikenwalder M, Protzer U. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology. 2016;150(1):194–205.

    Article  CAS  PubMed  Google Scholar 

  363. Lee YH, Bae SC, Song GG. Hepatitis B virus (HBV) reactivation in rheumatic patients with hepatitis core antigen (HBV occult carriers) undergoing anti-tumor necrosis factor therapy. Clin Exp Rheumatol. 2013;31(1):118–21.

    PubMed  Google Scholar 

  364. Nagaki M, Iwai H, Naiki T, Ohnishi H, Muto Y, Moriwaki H. High levels of serum interleukin-10 and tumor necrosis factor-alpha are associated with fatality in fulminant hepatitis. J Infect Dis. 2000;182(4):1103–8.

    Article  CAS  PubMed  Google Scholar 

  365. Bouezzedine F, Fardel O, Gripon P. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology. 2015;481:34–42.

    Article  CAS  PubMed  Google Scholar 

  366. Hösel M, Quasdorff M, Wiegmann K, Webb D, Zedler U, Broxtermann M, Tedjokusumo R, Esser K, Arzberger S, Kirschning CJ, Langenkamp A, Falk C, Büning H, Rose-John S, Protzer U. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology. 2009;50(6):1773–82.

    Article  PubMed  CAS  Google Scholar 

  367. Kakumu S, Shinagawa T, Ishikawa T, Yoshioka K, Wakita T, Ito Y, Takayanagi M, Ida N. Serum interleukin 6 levels in patients with chronic hepatitis B. Am J Gastroenterol. 1991;86(12):1804–8.

    CAS  PubMed  Google Scholar 

  368. Pan CJ, Wu HL, Kuo SF, Kao JH, Tseng TC, Liu CH, Chen PJ, Liu CJ, Chen DS. Serum interleukin 6 level correlates with outcomes of acute exacerbation of chronic hepatitis B. Hepatol Int. 2012;6(3):591–7.

    Article  PubMed  Google Scholar 

  369. Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol. 2001;166(9):5530–9.

    Article  CAS  PubMed  Google Scholar 

  370. Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, Lascar RM, Brown D, Gilson RJ, Tedder RJ, Dusheiko GM, Jacobs M, Klenerman P, Maini MK. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology. 2009;137(4):1289–300.

    Article  CAS  PubMed  Google Scholar 

  371. Gong Y, Zhao C, Zhao P, Wang M, Zhou G, Han F, Cui Y, Qian J, Zhang H, Xiong H, Sheng J, Jiang T. Role of IL-10-producing regulatory B cells in chronic hepatitis B virus infection. Dig Dis Sci. 2015;60(5):1308–14.

    Article  CAS  PubMed  Google Scholar 

  372. Berry PA, Antoniades CG, Hussain MJ, McPhail MJ, Bernal W, Vergani D, Wendon JA. Admission levels and early changes in serum interleukin-10 are predictive of poor outcome in acute liver failure and decompensated cirrhosis. Liver Int. 2010;30(5):733–40.

    Article  CAS  PubMed  Google Scholar 

  373. Das A, Ellis G, Pallant C, Lopes AR, Khanna P, Peppa D, Chen A, Blair P, Dusheiko G, Gill U, Kennedy PT, Brunetto M, Lampertico P, Mauri C, Maini MK. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol. 2012;189(8):3925–35.

    Article  CAS  PubMed  Google Scholar 

  374. Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, Warszawska K, Wolk K, Quesniaux V, Ryffel B, Togbe D. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med. 2011;183(9):1153–63.

    Article  CAS  PubMed  Google Scholar 

  375. Ye Y, Xie X, Yu J, Zhou L, Xie H, Jiang G, Yu X, Zhang W, Wu J, Zheng S. Involvement of Th17 and Th1 effector responses in patients with Hepatitis B. J Clin Immunol. 2010;30(4):546–55.

    Article  CAS  PubMed  Google Scholar 

  376. Qi ZX, Wang LY, Fan YC, Zhang JJ, Li T, Wang K. Increased peripheral RORα and RORγt mRNA expression is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2012;19(11):811–22.

    Article  PubMed  Google Scholar 

  377. Wu W, Li J, Chen F, Zhu H, Peng G, Chen Z. Circulating Th17 cells frequency is associated with the disease progression in HBV infected patients. J Gastroenterol Hepatol. 2010;25(4):750–7.

    Article  CAS  PubMed  Google Scholar 

  378. Jegaskanda S, Ahn SH, Skinner N, Thompson AJ, Ngyuen T, Holmes J, De Rose R, Navis M, Winnall WR, Kramski M, Bernardi G, Bayliss J, Colledge D, Sozzi V, Visvanathan K, Locarnini SA, Kent SJ, Revill PA. Downregulation of interleukin-18-mediated cell signaling and interferon gamma expression by the hepatitis B virus e antigen. J Virol. 2014;88(18):10412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Giedraitis V, He B, Huang WX, Hillert J. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol. 2001;112(1-2):146–52.

    Article  CAS  PubMed  Google Scholar 

  380. Hirankarn N, Manonom C, Tangkijvanich P, Poovorawan Y. Association of interleukin-18 gene polymorphism (-607A/A genotype) with susceptibility to chronic hepatitis B virus infection. Tissue Antigens. 2007;70(2):160–3.

    Article  CAS  PubMed  Google Scholar 

  381. Zhang PA, Wu JM, Li Y, Yang XS. Association of polymorphisms of interleukin-18 gene promoter region with chronic hepatitis B in Chinese Han population. World J Gastroenterol. 2005;11(11):1594–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Li Y, Tang L, Hou J. Role of interleukin-21 in HBV infection: friend or foe? Cell Mol Immunol. 2015;12(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  383. Li HJ, Kang FB, Li BS, Yang XY, Zhang YG, Sun DX. Interleukin-21 inhibits HBV replication in vitro. Antivir Ther. 2015;20(6):583–90.

    Article  CAS  PubMed  Google Scholar 

  384. Xiang XG, Xie Q. IL-35: a potential therapeutic target for controlling hepatitis B virus infection. J Dig Dis. 2015;16(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Hu X, Ma S, Huang X, Jiang X, Zhu X, Gao H, Xu M, Sun J, Abbott WG, Hou J. Interleukin-21 is upregulated in hepatitis B-related acute-on-chronic liver failure and associated with severity of liver disease. J Viral Hepat. 2011;18(7):458–67.

    Article  CAS  PubMed  Google Scholar 

  386. Ho CH, Chien RN, Cheng PN, Liu CK, Su CS, Wu IC, Liu WC, Chen SH, Chang TT. Association of serum IgG N-glycome and transforming growth factor-β1 with hepatitis B virus e antigen seroconversion during entecavir therapy. Antiviral Res. 2014;111:121–8.

    Article  CAS  PubMed  Google Scholar 

  387. Weng HL, Liu Y, Chen JL, Huang T, Xu LJ, Godoy P, Hu JH, Zhou C, Stickel F, Marx A, Bohle RM, Zimmer V, Lammert F, Mueller S, Gigou M, Samuel D, Mertens PR, Singer MV, Seitz HK, Dooley S. The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology. 2009;50(1):230–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V. and Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, P. et al. (2019). Immunological Features of AECHB. In: Ning, Q. (eds) Acute Exacerbation of Chronic Hepatitis B. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1606-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1606-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1604-6

  • Online ISBN: 978-94-024-1606-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics