Skip to main content

Distributed Sensing and Control of Elastic Shells

  • Chapter
  • First Online:
Piezoelectric Shells

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 247))

  • 1012 Accesses

Abstract

Distributed sensing and control of a generic distributed parameter system (DPS) or a generic smart structronic shell system, i.e., a deep elastic shell laminated with distributed piezoelectric sensor and actuator layers, was proposed and corresponding generic theories derived. Based on the direct piezoelectric effect, the distributed sensor can be used to monitor shell oscillations; the converse effect enables the distributed actuators to manipulate structural behaviors and to suppress structural vibrations. Two generic sensor/actuator design principles, i.e., the segmentation technique and the shaping technique, were also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balas, M.J., 1988, “Nonlinear Finite-Dimensional Control of a Class of Nonlinear Distributed Parameter Systems Using Residual Mode Filters,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.19-22, December 1988.

    Google Scholar 

  • Balas, M.J., 1978, “Active Control of Flexible Systems,” Journal of Optimization Theory and Applications, Vol.25, No.3, July, pp.415-436.

    Google Scholar 

  • Baz, A. and Poh, S., 1988, “Performance of an Active Control System with Piezoelectric Actuators,” Journal of Sound _ Vibration, Vol.126, No.8, pp.327-343.

    Article  Google Scholar 

  • Brichkin, L.A., Butkovskii, A.G., and Pustyl’nikou, L.M., 1973, “Application of Finite Integral Transformation to Optimal Control Problems”, Automatika Telemekhanika 7, pp.13-24.

    Google Scholar 

  • Butkovskii, A.G., 1962, “The Maximum Principle for Optimum Systems with Distributed Parameters”, Automation and Remote Control, Vol.22, pp.1429-1438.

    Google Scholar 

  • Crawley, E.F. and deLuis, J., 1987, “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol.25, No.10, pp.1373-1385.

    Article  Google Scholar 

  • Crawley, E.F. and Anderson, E.H., 1990, “Detailed Models of Piezoceramic Actuation of Beams,” Journal of Intelligent Material Systems, Vol.1.1, pp.4-25.

    Article  Google Scholar 

  • Cudney, H.H., Inman, D.J., & Y. Oshman, 1989, “Distributed Parameter Actuators for Structural Control,” Proceedings of 1989 American Control Conference, pp.1189-1194.

    Google Scholar 

  • Fanson, J.L. and Garba, J.A., 1988, “Experimental Studies of Active Members in Control of Large Space Structures,” AIAA Paper 88-2207, Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, pp.9-17.

    Google Scholar 

  • Hagood, N., Chung, W., and A. von Flotow, 1990, “Modeling of Piezoelectric Actuator Dynamics for Active Structural Control,” AIAA Paper No.90-1087, 31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 2-4, 1990.

    Google Scholar 

  • Hanagud, S. and Obal, M.W., 1988, “Identification of Dynamic Coupling Coefficients in a Structure with Piezoelectric Sensors and Actuators,” Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, (Paper No.88-2418), Part-3, pp.1611-1620.

    Google Scholar 

  • Kawai, H., 1969, “The Piezoelectricity of Poly(vinylidene Fluoride),” Jpn. J. Appl. Phys., Vol.8, pp. 975-976.

    Article  Google Scholar 

  • Lee, C. K. & Moon, F.C., 1988, “Modal Sensors/Actuators,” IBM Research Report, RJ 6306 (61975), June.

    Google Scholar 

  • Lions, J.L., 1968, “Optimal Control of Systems Governed by Partial Differential Equations”, Dunod and Gauthier-Villars, Paris.

    Google Scholar 

  • Meirovitch, L. and Silverberg, L.M., 1983, “Globally Optimal Control of Self-Adjoint Distributed Systems,” Optimal Applications _ Methods, Vol.4, pp.365-386.

    Article  Google Scholar 

  • Meirovitch, L. and Baruh, 1981, “Effect of Damping on Observation Spillover Instability, Journal of Optimization Theory and Applications, Vol.35, No.1, Sept. pp.31-44.

    Article  MathSciNet  Google Scholar 

  • Obal, M.W., 1986, Vibration Control of Flexible Structures Using Piezoelectric Devices as Sensors and Actuators, Ph.D. Thesis, Georgia Institute of Technology.

    Google Scholar 

  • Plump, J.M., Hubbard, J. E., and Baily, T., 1987, “Nonlinear Control of a Distributed System: Simulation and Experimental Results,” ASME J. Dynamic Systems, Measurement, and Control, pp.133-139.

    Article  Google Scholar 

  • Reinhorn A.M. and Manolis, G.D., 1985, “Current state of knowledge on structural control,” Sound and Vibration Digest, Vol.17, pp.7-16.

    Google Scholar 

  • Robinson, A.C., 1971, “A Survey of Optimal Control of Distributed Parameter Systems”, Automatica 7, pp.371-388.

    Google Scholar 

  • Sakawa, Y., 1966, “Optimal Control of Certain Type of Linear Distributed-Parameter Systems”, IEEE Trans. on Automatic Control, Vol. AC-11, pp.35-41.

    Google Scholar 

  • Sessler, G.M., 1981, “Piezoelectricity in Polyvinylidene Fluoride,” J. Acoust. Soc. Am., 70(6), pp. 1596-1608.

    Article  Google Scholar 

  • Sirlin, S.W, 1987, “Vibration Isolation for Spacecraft Using the Piezoelectric Polymer PVF2,” Proc. of the 114th Meeting of the Acoustics Society of America, Nov.

    Google Scholar 

  • Tzafestas, S.G., 1970, “Optimal Distributed-Parameter Control Using Classical Variational Theory”, Int. J. Control 12, pp.593-608.

    Google Scholar 

  • Tzou, H. S., 1987, “Active Vibration Control of Flexible Structures Via Converse Piezoelectricity”, Developments in Mechanics, Vol.14-C, pp.201-206.

    Google Scholar 

  • Tzou, H.S., 1988a, “Dynamic analysis and passive control of viscoelastically damped nonlinear dynamic contacts,” J. Finite Elements in Analysis and Design, Vol.(4), No.3, pp.232-238.

    Google Scholar 

  • Tzou, H.S., 1988b, “Integrated Sensing and Adaptive Vibration Suppression of Distributed Systems,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.51-58, December.

    Google Scholar 

  • Tzou, H.S., 1989a, “Distributed Sensing and Feedback Controls of Distributed Parameter Systems,” High-Performance Computing, Edited by J.-L. Delhaye and E. Gelenbe, North-Holland, ELSEVIER Science Publishers B.V., Amsterdam, Netherlands, pp.95-107.

    Google Scholar 

  • Tzou, H.S., 1989b, “Theoretical Development of a Layered Thin Shell with Internal Distributed Controllers,” Failure Prevention and Reliability-1989, pp.17-20; 1989 ASME Technical Design Conference, Montreal, Canada, Sept.17-20.

    Google Scholar 

  • Tzou, H.S., 1989c, “Integrated Distributed Sensing and Active Vibration Suppression of Flexible Manipulators using Distributed Piezoelectrics,” Journal of Robotic Systems, Vol.6, No.6, pp. 745-767, December.

    Google Scholar 

  • Tzou, H.S., 1990, “Distributed Modal Identification and Vibration Control of Continua: Theory and Applications,” Proceedings of 1990 American Control Conference, pp. 1237-1243, San Diego, CA, May 23-25, 1990; ASME Journal of Dynamic Systems, Measurements, and Control, Vol.(113), No.(3), pp.494-499, September 1991.

    Google Scholar 

  • Tzou, H.S., 1992, “A New Distributed Sensor and Actuator Theory for “Intelligent” Shells,” Journal of Sound _ Vibration, Vol.(153), No.(2), pp. 335-350, March 1992.

    Google Scholar 

  • Tzou, H. S. & Gadre, M., 1988, “Active Vibration Suppression by Piezoelectric Polymer with Variable Feedback Gain,” AIAA Journal, Vol.26, No.8, pp.1014-1017.

    Article  Google Scholar 

  • Tzou, H. S. & Gadre, M., 1989, “Theoretical Analysis of a Muli-Layered Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls,” Journal of Sound and Vibration, Vol.132, No.3, pp.433-450, August.

    Google Scholar 

  • Tzou H.S. & Gadre, M., 1990, “Active Vibration Isolation and Excitation by a Piezoelectric Slab with Constant Feedback Gains,” Journal of Sound _ Vibration Vol.136, No.3, pp.477-490, February.

    Google Scholar 

  • Tzou, H.S. and Tseng, C.I., 1988a, “Active Vibration Control of Distributed Parameter Systems by Finite Element Method,” Computers in Engineering 1988, Vol.3, pp.599-604.

    Google Scholar 

  • Tzou, H.S. and Tseng, C.I., 1988b, “Development of a Thin Piezoelectric Finite Element Applied to Distributed Sensing and Active Vibration Controls,” 88-ASME/CIE-2, ASME Winter Annual Meeting, Chicago, Ill, 1988. (Invited Paper).

    Google Scholar 

  • Tzou, H.S. and Tseng, C.I., 1990, “Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach,” Journal of Sound & Vibration, Vol.138, No.1, pp.17-34, April.

    Google Scholar 

  • Tzou, H.S., Tseng, C.I. & Wan, G.C., 1990, “Distributed Structural Dynamics Control of Flexible Manipulators, Part 2: Distributed Sensor and Active Electromechanical Actuator,” Journal of Computers and Structures, Vol.35, No.6, pp.679-687.

    Google Scholar 

  • Usov, V.S. and Surygin, A.I., 1984, “Variation of SAW Velocity and Damping in a Piezofilm- Semiconductor Structure under the Effect of a Constant Transverse Electric Field,” Radioelektronika, (ISSN 0021-3470), Vol.27. (Nov. 1984).

    Google Scholar 

  • Vidyasagar, M., 1988, “Control of Distributed Parameter System Using the Coprime Factorization Approach,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.1-10, December.

    Google Scholar 

  • Wang, P.K.C., 1966, “On the Feedback Control of Distributed Parameter Systems”, Int. J. on Control, Vol. 3, No. 3, pp. 255-273.

    Article  Google Scholar 

  • Zimmerman, D.C., Inman, D.J. and Juang, J.N., 1988, “Low Authority- Threshold Control for Large Flexible Structures,” AIAA Paper 88-2270, Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, pp.459-469. (4/ShlScrAct-New.BkPzSm2)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hornsen (HS) Tzou .

Appendix

Appendix

4.1.1 Piezoelectricity Theory

Two fundamental equations are used in the derivation of distributed sensor theory:

$$\left\{ \text{T} \right\} = \left[ {\text{c}^{\text{D} } } \right]\left\{ \text{S} \right\} - \left[ \text{h} \right]^{\text{t} } \left\{ \text{D} \right\},$$
(4.9.1)
$$\left\{ \text{E} \right\} = \left[ {\upbeta^{\text{S} } } \right]\left\{ D \right\} - \left[ \text{h} \right]\left\{ \text{S} \right\},$$
(4.9.2)

where {T} is the stress vector (i.e., {T} = {T11 T22 T33 T23 T31 T12}t); [cD] is the elasticity matrix evaluated at constant dielectric displacement; {S} is the strain vector (i.e., {S} = {S11 S22 S33 S23 S31 S12}t); [h] is the piezoelectric constant matrix ; {D} is the electric displacement vector; [.]t indicates the matrix transpose; {E} is the electric field vector; [βS] is the dielectric impermeability matrix evaluated at constant strain.

4.1.2 Piezoelectric Matrix of Polyvinylidene Fluoride (PVDF)

Polymeric polyvinylidene fluoride (PVDF) has a mm2 structure (Kawai, 1969). The piezoelectric matrix [d] of a PVDF polymer can be expressed as (Sessler, 1981)

$$\left[ {\text{d}_{{\text{ij}}} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & {\text{d}_{15} } & 0 \\ 0 & 0 & 0 & {\text{d}_{24} } & 0 & 0 \\ {\text{d}_{31} } & {\text{d}_{32} } & {\text{d}_{33} } & 0 & 0 & 0 \\ \end{array} } \right].$$
(4.9.3)

Note that the piezoelectric coefficient d24 is equal to d15 for a PVDF electrically polarized and not mechanical stretched.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzou, H. (2019). Distributed Sensing and Control of Elastic Shells. In: Piezoelectric Shells. Solid Mechanics and Its Applications, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1258-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1258-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1256-7

  • Online ISBN: 978-94-024-1258-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics