Skip to main content

Computer-Assisted Orthopedic Surgery

  • Chapter
  • First Online:
Digital Orthopedics

Abstract

Computer-assisted orthopedic surgery (CAOS) is performed by digitizing the patient’s anatomy, combining the images in a computerized system, and integrating the surgical instruments into the digitized image background. CAOS is originated in framework system at early stage and has experienced an enormous and rapid development since the invention of computer and the revolutionary progresses of other related field technologies in the 1990s. According to the chosen virtual representation of the surgical object, surgical navigation systems can be classified as image-free and image-based (preoperative and intraoperative) technology. Within the latter class, in particular, CT-, 2-D fluoroscopy-, and 3-D fluoroscopy-based systems have successfully made their way into the operating room. It also can be active or passive. Active navigation systems can either perform surgical task or prohibit the surgeon from moving past a predefined zoon, such as surgical robot systems. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary, such as CT- or fluoroscopy-based systems. Currently, CAOS has gained wide acceptance among orthopedic surgeons and has become an invaluable tool for some orthopedic procedures, such as fracture treatment, TKA, THA, spine surgery, musculoskeletal tumor surgery, shoulder surgery, corrective osteotomy, and anterior cruciate ligament reconstruction. It offers surgeons real-time feedback of the surgical field and enables them to adjust the surgical technique to improve postoperative outcomes and decrease intraoperative errors. However, some factors, including a significant learning curve, increased surgical time, requirements for special setup and equipment handling in the operating room, specialized technical support, and cost, have limited this technology to be applied more extensively. Only knowing the basics and the limitations of the underlying technical principles can be the large potential that modern CAOS systems make available exploited effectively for the benefit of the patient. Finally, the clinical applications of CAOS in trauma, spine, hip, and knee arthroplasty, tumor surgery, and other fields are depicted in the last section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Spiegel EA, Wycis HT, Marks M. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–50.

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe E, Watanabe T, Manaka S, et al. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27:543–7.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65:545–9.

    Article  CAS  PubMed  Google Scholar 

  4. Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine. 2001;26:347–51.

    Article  CAS  PubMed  Google Scholar 

  5. Simon DA, Lavallee S. Medical imaging and registration in computer assisted surgery. Clin Orthop Relat Res. 1998;354:17–27.

    Article  Google Scholar 

  6. Phillips R. The accuracy of surgical navigation for orthopaedic surgery. Curr Orthop. 2007;21:180–92.

    Article  Google Scholar 

  7. Atesok K, Schemitsch EH. Computer-assisted trauma surgery. J Am Acad Orthop Surg. 2010;18:247–58.

    Article  PubMed  Google Scholar 

  8. Mavrogenis AF, Savvidou OD, Mimidis G, et al. Computer-assisted navigation in orthopaedic surgery. Orthopedics. 2013;36:631–41.

    Article  PubMed  Google Scholar 

  9. Kahler DM. Image guidance. Clin Orthop Relat Res. 2004;421:70–6.

    Article  Google Scholar 

  10. Stöckle U, König B, Dahne M, et al. Computer assisted pelvic and acetabular surgery: clinical experiences and indications. Unfallchirurg. 2002;105:886–92.

    Article  PubMed  Google Scholar 

  11. Mosheiff R, Khoury A, Weil Y, et al. First generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma. 2004;18:106–11.

    Article  PubMed  Google Scholar 

  12. Crowl AC, Kathler DM. Closed reduction and percutaneous fixation of anterior column acetabular fractures. Comput Aided Surg. 2002;7:169–78.

    Article  PubMed  Google Scholar 

  13. Mouhsine E, Garofalo R, Borens O, et al. Percutaneous retrograde screwing for stabilisation of acetabular fractures. Injury. 2005;36:1330–6.

    Article  CAS  PubMed  Google Scholar 

  14. Starr AJ, Jones AL, Reinert CM, et al. Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury. 2001;32(Suppl 1):45–50.

    Article  Google Scholar 

  15. Gao H, Luo CF, Hu CF, et al. Percutaneous screw fixation of acetabular fractures with 2-D fluoroscopy-based computerized navigation. Arch Orthop Trauma Surg. 2010;130:1177–83.

    Article  Google Scholar 

  16. Gao H, Luo CF, Hu CF, et al. Minimally invasive fluoro-navigation screw fixation for the treatment of pelvic ring injuries. Surg Innov. 2011;18:279–84.

    Article  PubMed  Google Scholar 

  17. Hofstetter R, Slomczykowski M, Krettek C, et al. Computer-assisted fluoroscopy-based reduction of femoral fractures and anteversion correction. Comput Aided Surg. 2000;5:311–25.

    Article  CAS  PubMed  Google Scholar 

  18. Weil Y, Gardner M, Helfet D, et al. Accuracy of femoral shaft fracture reduction using fluoroscopy based computerized navigation- a laboratory study. Clin Orthop Relat Res. 2007;460:185–91.

    PubMed  Google Scholar 

  19. Wilharm A, Gras F, Rausch S, et al. Navigation in femoral-shaft fractures – from lab tests to clinical routine. Injury. 2011;42:1346–52.

    Article  CAS  PubMed  Google Scholar 

  20. Nolte LP, Beutler T. Basic principles of CAOS. Injury. 2004;35:SA6–SA16.

    Article  Google Scholar 

  21. Ebraheim NA, Xu R, Biyani A, et al. Anatomic basis of lag screw placement in the anterior column of the acetabulum. Clin Orthop Relat Res. 1997;339:200–5.

    Article  Google Scholar 

  22. Gras F, Marintschev I, Klos K, et al. Screw placement for acetabular fractures: which navigation modality (2-dimensional vs. 3-dimensional) should be used? An experimental study. J Orthop Trauma. 2012;26(8):466–73.

    Article  PubMed  Google Scholar 

  23. Briem D, Linhart W, Lehmann W, et al. Computer-assisted screw insertion into the first sacral vertebra using a three-dimensional image intensifier: results of a controlled experimental investigation. Eur Spine J. 2006;15(6):757–63.

    Article  CAS  PubMed  Google Scholar 

  24. Smith HE, Yuan PS, Sasso R, et al. An evaluation of image-guided technologies in the place of percutaneous iliosacral screw. Spine. 2006;31(2):234–8.

    Article  PubMed  Google Scholar 

  25. Ochs BG, Gonser C, Shiozawa T, et al. Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury. 2010;41:1297–305.

    Article  PubMed  Google Scholar 

  26. Nolte LP, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech. 1995;10:293–303.

    Article  Google Scholar 

  27. Nolte LP, Visarius H, Arm E. Computer-aided fixation of spinal implants. J Image Guid Surg. 1995;1:88–93.

    Article  CAS  PubMed  Google Scholar 

  28. Nolte LP, Zamorano L, Jiang Z, et al. Image-guided insertion of transpedicular screws: a laboratory set-up. Spine. 1995;20:497–500.

    Article  CAS  PubMed  Google Scholar 

  29. Merloz P, Tonetti J, Eid A. Computer assisted spine surgery. Clin Orthop Relat Res. 1997;337:86–96.

    Article  Google Scholar 

  30. Merloz P, Tonetti J, Pittet L. Pedicle screw placement using image guided techniques. Clin Orthop Relat Res. 1998;354:39–48.

    Article  Google Scholar 

  31. Merloz P, Lavallee S, Tonetti J. Image-guided spinal surgery: technology, operative technique, and clinical practice. Oper Tech Orthop. 2000;10:56–63.

    Article  Google Scholar 

  32. Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35:2109–15.

    Article  PubMed  Google Scholar 

  33. Mihalko WM, Krackow KA. Differences between extramedullary, intramedullary, and computer-aided surgery tibial alignment techniques for total knee arthroplasty. J Knee Surg. 2006;19:33–6.

    Article  PubMed  Google Scholar 

  34. Wong KC, Kumta SM. Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res. 2013;471:762–73.

    Article  PubMed  Google Scholar 

  35. Fehlberg S, Eulenstein S, Lange T, et al. Computer-assisted pelvic tumor resection: fields of application, limits and perspectives. Recent Results Cancer Res. 2009;179:169–82.

    Article  PubMed  Google Scholar 

  36. Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc total hip arthroplasty: gait analysis in 25 patients. Acta Orthop Scand. 2002;73:386–91.

    Article  PubMed  Google Scholar 

  37. Honl M, Dierk O, Gauck C, et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am. 2003;85:1470–8.

    Article  PubMed  Google Scholar 

  38. Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery-a current perspective. Ann Surg. 2004;239:14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.

    Article  CAS  PubMed  Google Scholar 

  40. Sikorski JM, Chauhan S. Computer-assisted orthopaedic surgery: do we need CAOS? J Bone Joint Surg (Br). 2003;85:319–23.

    Article  CAS  Google Scholar 

  41. Rivkin G, Liebergall M. Challenges of technology integration and computer-assisted surgery. J Bone Joint Surg Am. 2009;91:13–6.

    Article  PubMed  Google Scholar 

  42. Langlotz F. Potential pitfalls of computer aided orthopedic surgery. Injury. 2004;35:SA17–23.

    Article  Google Scholar 

  43. Reddix RN Jr, Webb LX. Computer-assisted preoperative planning in the surgical treatment of acetabular fractures. J Surg Orthop Adv. 2007;16:138–43.

    PubMed  Google Scholar 

  44. Cimerman M, Kristan A. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerized planning modules. Injury. 2007;38:442–9.

    Article  PubMed  Google Scholar 

  45. Zheng GY, Kowal J, Ballester MAG, et al. Registration techniques for computer navigation. Curr Orthop. 2007;21:170–1179.

    Article  Google Scholar 

  46. Messmer P, Gross T, Suhm N, et al. Modality-based navigation. Injury. 2004;35:SA24–9.

    Article  Google Scholar 

  47. Dessenne V, Lavallee S, Julliard R, et al. Computer assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg. 1995;1:59–64.

    Article  CAS  PubMed  Google Scholar 

  48. Sati M, Staubli H, Bourquin Y, et al. Real-time computerized in situ guidance system for ACL graft placement. Comput Aided Surg. 2002;7:25–40.

    CAS  PubMed  Google Scholar 

  49. Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2003;11:40–5.

    Article  PubMed  Google Scholar 

  50. Sparmann M, Wolke B, Czupalla H, et al. Positioning of total knee arthroplasty with and without navigation support: a prospective, randomized study. J Bone Joint Surg (Br). 2003;85:830–5.

    Article  CAS  Google Scholar 

  51. Wong KC, Kumta SM, Chiu KH, et al. Precision tumour resection and reconstruction using image-guided computer navigation. J Bone Joint Surg Br. 2007;89:943–7.

    Article  CAS  PubMed  Google Scholar 

  52. Villavicencio AT, Burneikiene S, Bulsara KR, et al. Utility of computerized isocentric fluoroscopy for minimally invasive spinal surgical technique. J Spinal Disord Tech. 2005;18:369–75.

    Article  PubMed  Google Scholar 

  53. Sasso RC, Best NM, Potts EA. Percutaneous computer assisted translaminar facet screw: an initial human cadaveric study. Spine J. 2005;5:515–9.

    Article  PubMed  Google Scholar 

  54. Amiot LP, Lang K, Putzier M, et al. Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine. 2000;25:606–14.

    Article  CAS  PubMed  Google Scholar 

  55. Pring ME, Weber KL, Unni KK, et al. Chondrosarcoma of the pelvis. A review of sixty-four cases. J Bone Joint Surg Am. 2001;83:1630–42.

    Article  PubMed  Google Scholar 

  56. Gofton W, Dubrowski A, Tabloie F, et al. The effect of computer navigation on trainee learning of surgical skills. J Bone Joint Surg Am. 2007;89:2819–27.

    Article  PubMed  Google Scholar 

  57. Kendoff D, Bogojevic A, Citak M, et al. Experimental validation of noninvasive referencing in navigated procedures on long bones. J Orthop Res. 2005;25:201–7.

    Article  Google Scholar 

  58. Gosling T, Oszwald M, Kendoff D, et al. Computer-assisted antetorsion control prevents malrotation in femoral nailing: an experimental study and preliminary clinical case series. Arch Orthop Trauma Surg. 2009;129:1521–6.

    Article  PubMed  Google Scholar 

  59. Bonutti P, Dethmers S, Stiehl JB. Case report: femoral shaft fracture resulting from femoral tracker placement in navigated TKA. Clin Orthop Relat Res. 2008;466:1499–502.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stockle U, Krettek C, Pohlemann T, et al. Clinical application-pelvis. Injury. 2004;35(Suppl 1):46–56.

    Article  Google Scholar 

  61. Hawi N, Haentjes J, Suero EM, et al. Navigated femoral shaft fracture treatment: current status. Technol Health Care. 2012;20:65–71.

    PubMed  Google Scholar 

  62. Attias N, Lindsey RW, Starr AJ, et al. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005;87:1520–3.

    Article  CAS  PubMed  Google Scholar 

  63. Giannoudis PV, Tzioupis CC, Pape HC, et al. Percutaneous fixation of the pelvic ring. J Bone Joint Surg Br. 2007;89:145–54.

    Article  CAS  PubMed  Google Scholar 

  64. Braten M, Terjesen T, Rossvoll I. Torsional deformity after intramedullary nailing of femoral shaft fractures: measurement of femoral anteversion in 110 patients. J Bone Joint Surg Br. 1993;75:799–803.

    Article  CAS  PubMed  Google Scholar 

  65. Jaarsma RL, Pakvis DF, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yang KH, Han DY, Jahng JS, et al. Prevention of malrotation in femoral deformity in femoral shaft fracture. J Orthop Trauma. 1998;12:558–62.

    Article  CAS  PubMed  Google Scholar 

  67. Wick M, Muhr G. Ante- und retrograde marknagelung bei femurschaftfrakturen. Trauma Berufskr. 2005;7:103–6.

    Article  Google Scholar 

  68. Hoaglund FT, Low WD. Anatomy of the femoral neck and head with comparative data from Caucasians and Hong Kong Chinese. Clin Orthop Relat Res. 1980;(152):10–6.

    Google Scholar 

  69. Kendoff D, Citak MC, Gardner MJ, et al. Navigated femoral nailing using noninvasive registration of the contralateral intact femur to restore anteversion. Technique and clinical use. J Orthop Trauma. 2007;21(10):725–30.

    Article  PubMed  Google Scholar 

  70. Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;18(Suppl 1):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19(3):745–64.

    Article  CAS  PubMed  Google Scholar 

  72. Kuszyk BS, Heath DG, Bliss DF, Fishman EK. Skeletal 3-D CT: advantages of volume rendering over surface rendering. Skelet Radiol. 1996;25(3):207–14.

    Article  CAS  Google Scholar 

  73. Qiang M, Chen Y, Zhang K, Li H, Dai H. Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing. J Foot Ankle Res. 2014;7(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Michelsen JD, Ahn UM, Helgemo SL. Motion of the ankle in a simulated supination-external rotation fracture model. J Bone Joint Surg Am. 1996;78(7):1024–31.

    Article  CAS  PubMed  Google Scholar 

  75. Forberger J, Sabandal PV, Dietrich M, Gralla J, Lattmann T, Platz A. Posterolateral approach to the displaced posterior malleolus: functional outcome and local morbidity. Foot Ankle Int. 2009;30(4):309–14.

    Article  PubMed  Google Scholar 

  76. Tejwani NC, Pahk B, Egol KA. Effect of posterior malleolus fracture on outcome after unstable ankle fracture. J Trauma. 2010;69(3):666–9.

    Article  PubMed  Google Scholar 

  77. Abdelgawad AA, Kadous A, Kanlic E. Posterolateral approach for treatment of posterior malleolus fracture of the ankle. J Foot Ankle Surg. 2011;50(5):607–11.

    Article  PubMed  Google Scholar 

  78. Ferries JS, DeCoster TA, Firoozbakhsh KK, Garcia JF, Miller RA. Plain radiographic interpretation in trimalleolar ankle fractures poorly assesses posterior fragment size. J Orthop Trauma. 1994;8(4):328–31.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Qiang M, Zhang K, Li H, Dai H. A reliable radiographic measurement for evaluation of normal distal tibiofibular syndesmosis: a multi-detector computed tomography study in adults. J Foot Ankle Res. 2015;8:32.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Beumer A, van Hemert WL, Niesing R, et al. Radiographic measurement of the distal tibiofibular syndesmosis has limited use. Clin Orthop Relat Res. 2004;423:227–34.

    Article  Google Scholar 

  81. Chen Y, Zhang K, Qiang M, Li H, Dai H. Computer-assisted preoperative planning for proximal humeral fractures by minimally invasive plate osteosynthesis. Chin Med J. 2014;127(18):3278–85.

    Article  PubMed  Google Scholar 

  82. Chen Y, Qiang M, Zhang K, Li H, Dai H. Novel computer-assisted preoperative planning system for humeral shaft fractures: report of 43 cases. Int J Med Rob Comput Assisted Surg. 2015;11(2):109–19.

    Article  Google Scholar 

  83. Chen Y, Zhang K, Qiang M, Li H, Dai H. Comparison of plain radiography and CT in postoperative evaluation of ankle fractures. Clin Radiol. 2015;70(8):e74–82.

    Article  CAS  PubMed  Google Scholar 

  84. Qiang M, Chen Y, Zhang K, Li H, Dai H. Effect of sustentaculum screw placement on outcomes of intra-articular calcaneal fracture osteosynthesis: a prospective cohort study using 3D CT. Int J Surg. 2015;19:72–7.

    Article  PubMed  Google Scholar 

  85. Chen YX, Zhang K, Hao YN, Hu YC. Research status and application prospects of digital technology in orthopaedics. Orthop Surg. 2012;4(3):131–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V. and People's Medical Publishing House

About this chapter

Cite this chapter

Gao, H. et al. (2018). Computer-Assisted Orthopedic Surgery. In: Pei, G. (eds) Digital Orthopedics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1076-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1076-1_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1074-7

  • Online ISBN: 978-94-024-1076-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics