Skip to main content

Heuristics, Descriptions, and the Scope of Mechanistic Explanation

  • Chapter
Explanation in Biology

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 11))

Abstract

The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations and mathematical representations in the epistemic practices of mechanism discovery and mechanism description. These examples also indicate that the scope of mechanistic explanation must be re-examined: With new and increasingly powerful methods of discovery and description comes the possibility of describing mechanisms far more complex than traditionally assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For related discussions of the role of mathematical modeling in biology and its relation to mechanistic explanations see the contributions to this volume by Baetu (2015), Bechtel (2015), Braillard (2015), Mekios (2015), Brigandt (2015), and Issad and Malaterre (2015).

References

  • Abrahamsen, A., & Bechtel, W. (2006). Phenomena and mechanisms: Putting the symbolic, connectionist, and dynamical systems debate in broader perspective. In R. J. Stainton (Ed.), Contemporary debates in cognitive science (pp. 159–185). Oxford: Blackwell.

    Google Scholar 

  • Baetu, T. (2015). From mechanisms to mathematical models and back to mechanisms: Quantitative mechanistic explanations. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 345–363). Dordrecht: Springer.

    Google Scholar 

  • Banks, E., Nabieva, E., Chazelle, B., & Singh, M. (2008). Organization of physical interactomes as uncovered by network schemas. PLoS Computational Biology, 4(10), e1000203. doi:10.1371/journal.pcbi.1000203.

    Article  Google Scholar 

  • Bargmann, C. I., & Horvitz, H. R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742.

    Article  Google Scholar 

  • Bechtel, W. (2006). Discovering cell mechanisms. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge.

    Google Scholar 

  • Bechtel, W. (2015). Generalizing mechanistic explanations using graph-theoretic representations. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 199–225). Dordrecht: Springer.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441. doi:10.1016/j.shpsc.2005.03.010.

    Article  Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41(3), 321–333. doi:10.1016/j.shpsa.2010.07.003.

    Article  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.

    Google Scholar 

  • Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11(4), 209–243. doi:10.1177/1059712303114001; discussion 244–305.

    Article  Google Scholar 

  • Braillard, P.-A. (2015). Prospect and limits of explaining biological systems in engineering terms. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 319–344). Dordrecht: Springer.

    Google Scholar 

  • Brigandt, I. (2015). Evolutionary developmental biology and the limits of philosophical accounts of mechanistic explanation. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 135–173). Dordrecht: Springer.

    Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75(1), 1–27. doi:10.1086/587820.

    Article  Google Scholar 

  • Craver, C. F. (2006). When mechanistic models explain. Synthese, 153(3), 355–376. doi:10.1007/s11229-006-9097-x.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75, 1022–1033.

    Article  Google Scholar 

  • Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view. In P. Huneman (Ed.), Functions: Selection and mechanisms. Dordrecht: Springer.

    Google Scholar 

  • Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gigerenzer, G. (1991). From tools to theories: A heuristic of discovery in cognitive psychology. Psychological Review, 98(2), 254–267.

    Article  Google Scholar 

  • Glauer, R. (2012). Emergent mechanism: Reductive explanation for limited beings. Mentis: Münster.

    Google Scholar 

  • Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(S3), S342–S353. doi:10.1086/341857.

    Article  Google Scholar 

  • Harvey, I., di Paolo, E. A., Tuci, E., Wood, R., & Quinn, M. (2005). Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life, 11, 79–98.

    Article  Google Scholar 

  • Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press.

    Google Scholar 

  • Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.

    Article  Google Scholar 

  • Hubel, D., & Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195, 215–243.

    Article  Google Scholar 

  • Iino, Y., & Yoshida, K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. Journal of Neuroscience, 29(17), 5370–5380.

    Article  Google Scholar 

  • Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265–292). Dordrecht: Springer.

    Google Scholar 

  • Izquierdo, E. J., & Beer, R. D. (2013). Connecting a connectome to behavior: An ensemble of neuroanatomical models of C. elegans Klinotaxis. PLoS Computational Biology, 9(2), e1002890. doi:10.1371/journal.pcbi.1002890.

    Article  Google Scholar 

  • Izquierdo, E. J., & Lockery, S. R. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. The Journal of Neuroscience, 30(39), 12908–12917. doi:10.1523/JNEUROSCI.2606-10.2010.

    Article  Google Scholar 

  • Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373. doi:10.1007/s11229-011-9970-0.

    Article  Google Scholar 

  • Kaplan, D. M. (2012). How to demarcate the boundaries of cognition. Biology & Philosophy. doi:10.1007/s10539-012-9308-4.

    Google Scholar 

  • Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science, 78, 601–627.

    Article  Google Scholar 

  • Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kocabas, A., Shen, C. H., Guo, Z. V., & Ramanathan, S. (2012). Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature, 940, 273–277.

    Article  Google Scholar 

  • Leuridan, B. (2011). Three problems for the mutual manipulability account of constitutive relevance in mechanisms. The British Journal for the Philosophy of Science, 63(2), 399–427. doi:10.1093/bjps/axr036.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B, Biological Sciences, 207(1167), 187–217.

    Article  Google Scholar 

  • Mekios, C. (2015). Explanation in systems biology: Is it all about mechanisms? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 47–72). Dordrecht: Springer.

    Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(Supplement 6), S9. doi:10.1186/1471-2105-8-S6-S9.

    Article  Google Scholar 

  • Silberstein, M., & Chemero, A. (2013). Constraints on localization and decomposition as explanatory strategies in the biological sciences. Philosophy of Science, 80(5), 958–970.

    Article  Google Scholar 

  • Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Spencer, J. P., & Schöner, G. (2006). An embodied approach to cognitive systems: A dynamic neural field theory of spatial working memory. In Proceedings of the 28th annual conference of the Cognitive Science Society (pp. 2180–2185), Vancouver.

    Google Scholar 

  • Suzuki, H., Thiele, T. R., Faumont, S., Ezcurra, M., Lockery, S. R., & Schafer, W. R. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454(7200), 114–117. doi:10.1038/nature06927.

    Article  Google Scholar 

  • Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H., & Chklovskii, D. B. (2011). Structural properties of the Caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2), e1001066.

    Article  Google Scholar 

  • Webb, B. (2009). Animals versus animats: Or why not model the real iguana? Adaptive Behavior, 17(4), 269–286. doi:10.1177/1059712309339867.

    Article  Google Scholar 

  • Wheeler, M. (2005). Reconstructing the cognitive world. Cambridge, MA: MIT Press.

    Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society, B: Biological Sciences, 314, 1–340. doi:10.1098/rstb.1986.0056.

    Article  Google Scholar 

  • Williams, P. L., & Beer, R. D. (2010). Information dynamics of evolved agents. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), From animals to animats 11: Proceedings of the 11th international conference on simulation of adaptive behavior (pp. 38–49). Springer.

    Google Scholar 

  • Wimsatt, W. C. (1986). Forms of aggregativity. In A. Donagan, A. N. Perovich, & M. V. Wedin (Eds.), Human nature and natural knowledge: Festschrift for Marjorie Grene (pp. 259–293). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Wright, C., & Bechtel, W. (2007). Mechanisms and psychological explanation. In P. Thagard (Ed.), Philosophy of psychology and cognitive science (pp. 31–79). New York: Elsevier.

    Chapter  Google Scholar 

  • Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Zednik .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zednik, C. (2015). Heuristics, Descriptions, and the Scope of Mechanistic Explanation. In: Explanation in Biology. History, Philosophy and Theory of the Life Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9822-8_13

Download citation

Publish with us

Policies and ethics