Skip to main content

Taxonomy and Phylogeny of Unicellular Eukaryotes

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

The notion of ‘microbes’ encompasses Bacteria (unicellular and multicellular) and Archaea, together with unicellular eukaryotes. In addition, microbiologists have traditionally included within their study field a number of eukaryotes named ‘fungi’ (customary meaning), e.g. Fungi (modern meaning), which are generally multicellular, and Oobionta, which are constituted by a giant multinucleate cell. Unicellular eukaryotes only represent ~10 % of all eukaryotic species; however, if only kingdoms, sub-kingdoms and phyla (‘phyletic diversity’) are taken into consideration, most eukaryotes are unicellular. Taking into consideration the huge phyletic diversity of unicellular eukaryotes and of affiliate taxa, which nearly fits the whole diversity of eukaryotes, it is impossible to present here a comprehensive description of the whole of these taxa. The choice was therefore to select a part of high-level taxa, likely to illustrate the amazing diversity of eukaryotes. For each selected taxon, some traits are recurrently tackled topics, e.g. the chloroplast structure and the photosynthetic pigments, the kinetic apparatus and the cell wall. Some derived characters, more or less specific to a taxon and prone to constitute a biomarker (genetic, biochemical, cytological and/or biological), are also emphasized. The biological life cycle of at least one species belonging to the taxon is illustrated in a standardized way. Finally, the role of the taxon in the functioning of the biosphere is described. Eukaryotes, one of the three domains of Life (together with Bacteria and Archaea), encompass a dozen or so high-level taxa (here kingdoms). Most of these kingdoms include taxa traditionally considered as belonging to the former polyphyletic plant kingdom together with taxa belonging to the former animal kingdom. Similarly, most of these kingdoms encompass ensembles formerly referred to as ‘algae’, ‘fungi’ (customary meaning) and protozoa, which modern phylogenies proved to be highly polyphyletic and therefore artificial. Here, eukaryotic taxa are placed within putatively monophyletic ensembles (kingdoms): Archaeplastida (=Plantae), Rhizaria, Alveolata, Stramenopiles (=Heterokonta), Haptobionta (=Haptophytes), Discicristates, Excavates, Opisthokonta (including Metazoa and Fungi, modern meaning), Amoebobionta (=Amoebozoa) and Cryptobionta.

Chapter Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many Bacteria are multicellular, such as. Cyanobacteria, Actinobacteria and Firmicutes (e.g. Candidatus Arthromitus).

  2. 2.

    Within prokaryotes, the highest taxonomic rank is that of the phylum. In contrast, within eukaryotes, the highest taxonomic rank is constituted by kingdoms, though their use and definition are not ruled by the traditional nomenclature codes, constrained ‘by nature’ by the Linnean dichotomy plant-animals.

  3. 3.

    Spore, from the ancient Greek word spora (meaning ‘seed’, ‘sowing’).

  4. 4.

    In prokaryotes, the term ‘spore’ is used with a different meaning from the one defined here for eukaryotes.

  5. 5.

    For the use of undulipodium rather than flagellum, in eukaryotes, see Sect. 5.4.2. Flagella are structures that characterize prokaryotes. Undulipodiums are much more complex structures, completely different from a biochemical and functioning point of view, which are specific to eukaryotes.

  6. 6.

    The gametogenous, sporogenous, and carpoconidiogenous generations (gametogen, sporogen, and carpoconidiogen) are traditionally named ‘gametophyte’, ‘sporophyte’, and ‘carposporophyte’, respectively, by most botanists. This terminology, stemming from the Linnean traditional dichotomy between a botanical and a zoological kingdoms, is particularly inappropriate in that similar generations and life cycles can be found within both these customary kingdoms. ‘-phyte’ comes from the ancient Greek ‘phuton’ and means ‘plant’.

  7. 7.

    Incertae sedis (Latin for ‘of uncertain placement’) is the term used to define a taxonomic group whose relationships are unknown or undefined.

  8. 8.

    Rhodobionta: from the ancient Greek words ‘rhodon’ (pink) and ‘biont’ (living thing).

  9. 9.

    Uronic acids (e.g. the galacturonic acid) are a class of sugar acids (hexoses) with both carbonyl and carboxylic acid functional groups. In the case of pectin, the hexose is galactose.

  10. 10.

    Apart from Streptobionta, lignin is also present in a species of Rhodobionta living in the intertidal zone. According to Martone et al. (2009), the lignin biosynthetic pathways may have been present in the common unicellular ancestor of Viridiplantae and Rhodobionta.

  11. 11.

    MPOs = Multicellular Photosynthetic Organisms.

  12. 12.

    Chlorarachniobionta: from the Greek ‘chloros’ (green) and ‘arachne’ (spider).

  13. 13.

    The nucleomorph of Chlorarachniobionta has lost most of its genes: it has only 380 kb.

  14. 14.

    Foraminifera: from the Latin ‘foramen’, an opening and ‘ferre’, to bear. For short, ‘hole bearers’.

  15. 15.

    A crista is a fold in the inner membrane of a mitochondrion.

  16. 16.

    The customary notion of ‘invertebrates’ does not correspond to a monophyletic taxon (modern meaning), but encompasses a paraphyletic group of taxa.

  17. 17.

    Dinobionta: from the Ancient Greek ‘dinô’, meaning spinning top, vortex. This name refers to the fact that cells frequently turn on themselves like tops. A similar but different Greek root, ‘deinos’, meaning terrible, awesome, is the origin of the name of the dinosaurs (=terrible lizards).

  18. 18.

    The unipartite mastigoneme of Dinobionta corresponds to the terminal part of the tripartite mastigoneme of Chromobionta (cf. Sect. 7.9.3).

  19. 19.

    The name Apicomplexa is derived from le Latin apex (top) and complexus (infolds).

  20. 20.

    Stramenopiles: from the Latin stramen (straw) and pilus (hair), in reference to the undulipodiums covered by mastigonemes.

  21. 21.

    The suffix ‘phyceae’ is used to designate taxa (taxonomic rank: class) belonging to ‘algae’ (traditional sense). ‘Phyceae’ comes from the ancient Greek ‘phykos’ which means ‘seaweed’.

  22. 22.

    Actinophryda: from the ancient Greek aktina (ray) and ophrys (eyebrow).

  23. 23.

    The name of Opalinida is derived from their opalescent appearance when illuminated with sunlight.

  24. 24.

    The name of Labyrinthulobionta is derived from Labyrinthula, a diminutive of the Latin Labyrinthus (labyrinth) and the ancient Greek biont (living thing).

  25. 25.

    Oobionta: From the Greek “oon”, egg. The name refers to the female gametes, that are rounded, large, and non motile, that ancient writers named ‘eggs’.

  26. 26.

    The name of Chromobionta is derived from the ancient Greek khrôma (color) and biont (living thing). The name refers to the fact that the green color of chlorophyll, when present, is usually masked by the abundance of pigments in a different color (brown, yellow, gold, etc.).

  27. 27.

    Some authors (e.g. Andersen 2004) refer to the Chromobionta as ‘Heterokonta’, which causes confusion. For most authors, Heterokonta are what we refer to here as the stramenopiles.

  28. 28.

    The term ‘pico-eukaryote’ refers to the small size of these organisms; ‘pico’ is a Spanish expression (‘y pico’) meaning ‘and some’. It should be noted that the size of these organisms (up to 3 μm) is much greater than the picometer.

  29. 29.

    This undulipodium is often referred to in the literature as the ‘posterior’ undulipodium, which is incorrect. Rather, as in all bikonts, both undulipodiums are anterior.

  30. 30.

    Haptobionta, from the ancient Greek hapsis (binding) and biont (living thing). The name refers to the possible role of the haptonema.

  31. 31.

    In fact, coccolithophorids (=coccolithophores, Coccolithophorida) only correspond to a class of Haptobionta, namely the Prymnesiophyceae (de Reviers 2003; Andersen 2004), although sometimes incorrectly used with a wider meaning.

  32. 32.

    Cryptobionta, from the ancient Greek kruptos (hidden) and biont (living thing). This name is not based on a general characteristic of the taxon, but the name of one of the genera belonging to it, Cryptomonas.

  33. 33.

    Discicritates, from the Latin discus (disk) and crista (crest). This name refers to the mitochondrial cristae which resemble ping-pong rackets.

  34. 34.

    Opisthokonta: from the ancient Greek opistho (hind) and kontos (pole, in reference to the undulipodium).

  35. 35.

    Fungi is the plural of the Latin word ‘Fungus’, which means ‘mushroom’. By convention, the term ‘Fungi’ is used here even when used in the singular.

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA et al (2004) Complete genome sequence of the Apicomplexan, Cryptosporidium parvum. Science 304:441–445

    CAS  PubMed  Google Scholar 

  • Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522

    PubMed  Google Scholar 

  • Andersen RA (2005) Algae and the vitamin mosaic. Nature 438:33–34

    CAS  PubMed  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldan B, Andolfo P, Navazio L, Tolomio C, Mariani P (2001) Cellulose in algal cell wall: an ‘in situ’ localization. Eur J Histochem 45:51–56

    CAS  PubMed  Google Scholar 

  • Baldauf SL (2003) The deep roots of eucaryotes. Science 300:1703–1706

    CAS  PubMed  Google Scholar 

  • Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273

    Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci U S A 94:12007–12012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefret I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    CAS  PubMed  Google Scholar 

  • Barr DJS, Désaulniers NL (1989) The flagellar apparatus of the oomycetes and hyphochytriomycetes. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 343–355

    Google Scholar 

  • Beakes GW (1989) Oomycete fungi: their phylogeny and relationship to chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 325–342

    Google Scholar 

  • Berge T, Hansen PJ, Moestrup Ø (2008) Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat Microb Ecol 50:279–288

    Google Scholar 

  • Berger L, Hyatt AD, Speare R, Longcore JE (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aqua Org 68:51–63

    Google Scholar 

  • Bert JJ, Dauguet JC, Maume D, Bert M (1991) Recherche des acides gras et des stérols chez deux Rhodophycées: Calliblepharis jubata et Solieria chordalis (Gigartinales). Cryptogamie Algol 12:157–162

    Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 25:50–60

    Google Scholar 

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–494

    CAS  PubMed  Google Scholar 

  • Bittner L et al (2013) Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol 22:87–101

    CAS  PubMed  Google Scholar 

  • Bjornland T, Liaaen-Jensen S (1989) Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 37–61

    Google Scholar 

  • Bodyl A, Stiller JW, Mackiewicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121

    PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    CAS  PubMed  Google Scholar 

  • Bornens M, Azimzadeh J (2007) Origin and evolution of the centrosome. In: Jékeli G (ed) Origins and evolution of eukaryotic endomembranes and cytoskeleton. Landes Bioscience, Austin, pp 119–129

    Google Scholar 

  • Bouchet P (2000) L’insaisissable inventaire des espèces. La Recherche 333:40–45

    Google Scholar 

  • Boudouresque CF (2011) Taxonomie et phylogénie des Eucaryotes unicellulaires. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P (eds) Ecologie microbienne. Microbiologie des milieux naturels et anthropisés. Presses Universitaires de Pau et des Pays de l’Adour (PUPPA), Pau, pp 203–260

    Google Scholar 

  • Boudouresque CF, Ruitton S, Verlaque M (2006) Anthropogenic impacts on marine vegetation in the Mediterranean. In: Proceedings of the second Mediterranean symposium on marine vegetation, Athens, 12–13 Dec 2003. Regional Activity Centre for Specially Protected Areas Publ, Tunis, pp 34–54

    Google Scholar 

  • Braselton JP (1995) Current status of the plasmodiophorids. Crit Rev Microbiol 21:263–275

    CAS  PubMed  Google Scholar 

  • Braselton JP (2009) Plasmodiophorid home page. http://oak.cats.ohiou.edu/~braselto/plasmos

  • Brodie J, Maggs CA, John DM (eds) (2007) Green seaweeds of Britain and Ireland. British Phycological Society, UK

    Google Scholar 

  • Brown MW, Kolisko M, Silberman M, Roger AJ (2012) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22(12):1123–1127

    CAS  PubMed  Google Scholar 

  • Bruns T (2006) A kingdom revised. Nature 443:758–760

    CAS  PubMed  Google Scholar 

  • Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51

    CAS  PubMed  Google Scholar 

  • Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Roy Soc B 279:2246–2254

    Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Google Scholar 

  • Calderon-Saenz E, Schnetter R (1989) Morphology, biology and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotrophic marine alga. Plant Syst Evol 163:165–176

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1987a) Eukaryote cell evolution. In: Greuter W, Zimmer B (eds) Proceedings of the XIV international botanical congress, Berlin, 24 Jul–1 Aug 1987. Koeltz, Koenigstein, pp 203–223

    Google Scholar 

  • Cavalier-Smith T (1987b) The origin of fungi and pseudofungi. In: Rayner ADM (ed) Evolutionary biology of fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:295–354

    Google Scholar 

  • Cavalier-Smith T, Chao EE (2002) Molecular phylogeny of centrohelid Heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 56:387–396

    Google Scholar 

  • Cavalier-Smith T, Chao EEY (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358

    PubMed  Google Scholar 

  • Cavalier-Smith T, von der Heyden S (2007) Molecular phylogeny, scale evolution and taxonomy of centrohelid Heliozoa. Mol Phylogenet Evol 44:1186–1203

    CAS  PubMed  Google Scholar 

  • Chadefaud M (1960) Les végétaux non vasculaires (cryptogamie). In: Chadefaud M, Emberger L (eds) Traité de botanique systématique, Tome 1. Masson & Cie, Paris, pp i–xv + 1–1018

    Google Scholar 

  • Chadefaud M (1978) Les champignons. In: Des Abbayes H, Chadefaud M, Feldmann J, De Ferré Y, Gaussen H, Grassé PP, Prévot AR (eds) Précis de botanique, Tome 1. Végétaux inférieurs. Deuxième édition. Masson & Cie, Paris, pp 321–518

    Google Scholar 

  • Chauzat MP, Higes M, Martin-Hernandez R, Meana A, Cougoule N, Faucon JP (2007) Presence of Nosema ceranae in French honey bee colonies. J Apicul Res 45:127–128

    Google Scholar 

  • Courties C, Perasso R, Chétiennot-Dinet MJ, Gouy M, Guillou L, Trousselier M (1998) Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J Phycol 34:844–849

    CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    CAS  PubMed  Google Scholar 

  • Cuvelier ML et al (2008) Widespread distribution of a unique marine protistan lineage. Environ Microbiol 10:1621–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dacks J, Roger AJ (1999) The first sexual lineage and the relevance of facultative sex. J Mol Evol 48:779–783

    CAS  PubMed  Google Scholar 

  • de Reviers B (2003) Biologie et phylogénie des algues, Tome 2. Belin, Paris

    Google Scholar 

  • Drebes G (1981) Possible resting spores of Dissodinium pseudolunula (Dinophyta) and their relation to other taxa. Br Phycol Bull 16:207–215

    Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    CAS  PubMed  Google Scholar 

  • Dyer PS (2008) Evolutionary biology: microsporidia sex – a missing link to Fungi. Curr Biol 18:R1012–R1014

    CAS  PubMed  Google Scholar 

  • Eichinger L et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    CAS  PubMed  Google Scholar 

  • Erdos GW, Raper KB, Vogen LK (1975) Sexuality in the cellular slime mold Dictyostelium giganteum. Proc Natl Acad Sci U S A 72:970–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evert RF, Eichhorn SE (2013) Raven biology of plants, 8th edn. W.F. Freeman Publishers

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CAS  PubMed  Google Scholar 

  • Feldmann J, Feldmann G (1945) Sur le metabolism du glycérol chez les Rhodophycées. C R Acad Sci 220:467–469

    Google Scholar 

  • Feldmann J, Feldmann G (1955) Observations sur quelques Phycomycètes marins nouveaux ou peu connus. Rev Mycol 20:231–251

    Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125

    Google Scholar 

  • Foster RA, Carpenter EJ, Gergman B (2006) Unicellular cyanobionts in open ocean dinoflagellates, radiolarians and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol 42:458–463

    Google Scholar 

  • Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Le Gall F, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93

    Google Scholar 

  • Gaudet P, Williams JG, Fey P, Chisholm RL (2008) An anatomy ontology to represent biological knowledge in Dictyostelium discoideum. BMC Genom 9:1–12

    Google Scholar 

  • Gazzaniga M (2009) Aquariofilia e microscopia ottica. http://www.acquariofiliaemicroscopia.it

  • Genovesi-Giunti B (2006) Initiation, maintien et récurrence des efflorescences toxiques d’Alexandrium catenella (Dinophyceae) dans une lagune méditerranéenne (Thau, France): rôle du kyste dormant. Thèse Doct, Univ Montpellier II

    Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in microsporidia from a mitochondrial- type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168

    CAS  PubMed  Google Scholar 

  • Gray P (1995) L’Irlande au temps de la grande famine. Gallimard, Paris

    Google Scholar 

  • Gray AP, Lucas IAN, Seed R, Richardson CA (1999) Mytilus edulis chilensis infested with Coccomyxa parasitica (Chlorococcales, Coccomyxaceae). J Mollus Stud 65:289–294

    Google Scholar 

  • Green JC, Course PA, Tarran GA (1996) The life cycle of Emiliana huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst 9:33–44

    Google Scholar 

  • Gretz MR, Sommerfeld MR, Aronson JM (1982) Cell wall composition of the generic phase of Bangia atropurpurea (Rhodophyta). Bot Mar 25:529–535

    CAS  Google Scholar 

  • Gretz MR, Aronson JM, Sommerfeld MR (1984) Taxonomic significance of cellulosic cell walls in the Bangiales (Rhodophyta). Phytochemistry 23:2513–2514

    CAS  Google Scholar 

  • Groisillier A, Massana R, Valentin K, Vaulot D, Guillou L (2006) Genetic diversity and habitats of two enigmatic alveolate lineages. Aquat Microb Ecol 42:277–291

    Google Scholar 

  • Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580

    CAS  Google Scholar 

  • Gülkiz Şenler N, Yildiz I (2003) Infraciliature and other morphological characteristics of Enchelyodon longikineta n.sp. (Ciliophora, Haptoria). Eur J Protistol 39:267–274

    Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB (2009) Phylogenetic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen PJ, Fenchel T (2006) The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res 2:169–177

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Herzog M, Von Boletzky S, Soyer MO (1984) Ultrastructural and biochemical nuclear aspects of Eukaryote classification: independent evolution of the dinoflagellates as a sister group of the actual Eukaryotes? Orig Life 13:205–215

    CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Horn S, Ehlers K, Fritzsch G, Gil-Rodriguez MC, Wilhelm C, Schnetter R (2007) Synchroma grande sp. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes. Protist 158:277–293

    CAS  PubMed  Google Scholar 

  • Huang J, Xu Y, Gogarten JP (2005) The presence of a holaoarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol Biol Evol 22:2142–2146

    CAS  PubMed  Google Scholar 

  • Inouye I (1993) Flagella and flagellar apparatuses of algae. In: Berner T (ed) Ultrastructure of microalgae. CRC Press, Boca Raton, pp 99–133

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hoffstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Jeffrey SW (1989) Chlorophyll c pigments and their distribution in the chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 13–36

    Google Scholar 

  • Jousson O, Di Bello D, Donadio E, Felicioli A, Pretti C (2007) Differential expression of cysteine proteases in developmental stages of the parasitic ciliate Ichthyophthirius multifilis. FEMS Microbiol Lett 269:77–84

    CAS  PubMed  Google Scholar 

  • Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) Schizocladia ischiensis: a new filamentous marine chromophyte belonging to a new class, Schizocladiophyceae. Protist 154:211–228

    CAS  PubMed  Google Scholar 

  • Keeling PJ (2008) Bridge over troublesome plastids. Nature 451:896–897

    CAS  PubMed  Google Scholar 

  • Kim OTP, Yura K, Go N, Harumoto T (2005) Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions. Gene 346:277–286

    CAS  PubMed  Google Scholar 

  • Kim E, Harrison JW, Sudek S, Jones MDM, Wilcox HM, Richards TA, Worden AZ, Archibald JM (2011a) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci 108(4):1496–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim E, Harrison JW, Sudek S, Jones MD, Wilcox HM, Richards TA, Worden AZ, Archibald JM (2011b) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA 108:1496–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kling SA, Boltovskoy D (2002) What are radiolarians? http://www.radiolarian.org

  • Kokinos JP, Eglinton TI, Goni MA, Boon JA, Martoglio PA, Anderson DM (1998) Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate cyst. Org Geochem 28:265–288

    CAS  Google Scholar 

  • Kramarsky-Winter E, Harel M, Siboni N, Ben Dov E, Brickner I, Loya Y, Kushmaro A (2006) Identification of a protist-coral association and its possible ecological role. Mar Ecol Prog Ser 317:67–73

    Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Lethraria. Bryologist 103:645–660

    CAS  Google Scholar 

  • Lafferty KD (2006) Can the common brain parasite, Toxoplasma gondii, influence human culture? Proc Roy Soc Lond B 273:2749–2755

    Google Scholar 

  • Lara E, Moreira D, Vereshchaka A, López-García P (2009) Pan-oceanic distribution of new highly diverse clades of deep-se diplonemids. Environ Microbiol 11(1):47–65

    CAS  PubMed  Google Scholar 

  • Larsson R (2009) Cytology and taxonomy of the microsporidia. http://www.cob.lu.se/microsporidia

  • Lass-Flörl C, Mayr A (2007) Human protothecosis. Clin Microbiol Rev 20(230):242

    Google Scholar 

  • Leadbeater BSC (1989) The phylogenetic significance of flagellar hairs in the Chromophyta. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 145–165

    Google Scholar 

  • Leander BS, Saldarriaga JF, Keeling PJ (2002) Surface morphology of the marine parasite Haplozoon axiothellae Siebert (Dinoflagellata). Eur J Protistol 38:287–297

    Google Scholar 

  • Le Calvez J (1953) Ordre des Foraminifères. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie, Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fascicule II. Masson & Cie, Paris, pp 149–265

    Google Scholar 

  • Lecointre G, Le Guyader H (2006) Classification phylogénétique du vivant, 3rd edn. Belin, Paris

    Google Scholar 

  • Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, Østeras M, Farinelli L, Pawlowski J (2011) Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci USA 108:13 177–13 182

    CAS  Google Scholar 

  • Lee SC, Corradi N, Byrnes EJ III, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual Fungi. Curr Biol 18:1675–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater pico-eucaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    PubMed  Google Scholar 

  • Lejzerowicz F, Pawlowski J, Fraissinet-Tachet L, Marmeisse R (2010) Molecular evidence for widespread occurrence of Foraminifera in soils. Environ Microbiol 12(9):2518–2526

    CAS  PubMed  Google Scholar 

  • Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Martinez Arbizu P, Pawlowski J (2013) Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol Lett (in press)

    Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Google Scholar 

  • Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652

    CAS  PubMed  Google Scholar 

  • Liao QY, Li J, Zhang JH, Li M, Lu Y, Xu RL (2009) An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Eur J Soil Biol 45:214–219

    CAS  Google Scholar 

  • Lindberg K, Moestrup O, Daugbjerg N (2005) Studies on wolozynskioid dinoflagellates I:Wolozynskia coronate re-examined using light and electron microscopy and partial LSU rDNA sequences, with description of Tovellia gen. nov. and Jadwigia gen. nov. (Tovelliaceae fam. nov.). Phycologia 44:416–440

    Google Scholar 

  • Litaker RW, Vandersea RW, Faust MA, Kibler SR, Chinain M, Holmes MJ, Holland WC, Tester PA (2009) Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48(5):344–390

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    CAS  PubMed  Google Scholar 

  • Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:1–13

    Google Scholar 

  • Loftus B, Anderson I, Davies RU, Alsmark CM, Samuelson J, Amedeo P et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    CAS  PubMed  Google Scholar 

  • Logares R, Audic S, Santini S, Pernice MC, de Vargas C, Massana R (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logsdon JM Jr (2007) Evolutionary genetics: sex happens in Giardia. Curr Biol 18:R66–R68

    Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    PubMed Central  PubMed  Google Scholar 

  • Macinnes MA, Francis D (1974) Meiosis in Dictyostelium mucoroides. Nature 251:321–324

    CAS  PubMed  Google Scholar 

  • Maldonado M, López-Acosta M, Sitjà C, Aguilar R, García S, Vacelet J (2013) A giant foraminifer that converges to the feeding strategy of carnivorous sponges: Spiculosiphon oceana sp. nov. (Foraminifera, Astrorhizida). Zootaxa 3669(4):571–584

    Google Scholar 

  • Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr (2008) An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 3:1–13

    Google Scholar 

  • Margulis L, Dolan MF (1997) Swimming against the current. In: Margulis L, Sagan D (eds) Slanted truths. Copernicus Publ, New York, pp 47–58

    Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    CAS  PubMed  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    CAS  PubMed  Google Scholar 

  • May R (1997) L’inventaire des espèces vivantes. In: L’évolution. Dossier Hors-série Pour la Science, pp 40–47

    Google Scholar 

  • McDonald SM, Sarno D, Scanlan DJ, Zingone A (2007) Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquat Microb Ecol 50:75–89

    Google Scholar 

  • McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19:1033–1040

    CAS  PubMed  Google Scholar 

  • McFadden GI, Waller RF, Ralph SA, Foth B, Tonkin C, Su V et al (2001) The relict plastid of malaria parasites. Phycologia 40(4 suppl):16–17

    Google Scholar 

  • McInnes AG, Ragan MA, Smith DG, Walter JA (1984) High-molecular-weight phloroglucinol based tannins from brown algae: structural variants. Hydrobiologia 116–117:597–602

    Google Scholar 

  • McLean RO, Corrigan J, Webster J (1981) Heterotrophic nutrition in Melosira nummuloides, a possible role in affecting distribution in the Clyde Estuary. Br Phycol J 16:95–106

    Google Scholar 

  • Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43:245–270

    Google Scholar 

  • Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:278–367

    Google Scholar 

  • Meyer-Harms B, Pollehne F (1998) Alloxanthin in Dinophysis norvegica (Dinophysiales, Dinophyceae) from the Baltic Sea. J Phycol 34:280–285

    CAS  Google Scholar 

  • Miller JJ, Delwiche CF, Coats DW (2012) Ultrastructure of Amoebophrya sp. and its change during the course of infection. Protist 163:720–745

    PubMed  Google Scholar 

  • Molds W (2009) Introduction to Oomycota. http://www.ucmp.berkeley.edu/chromista/oomycota.html

  • Monier A, Pagarete A, De Vargas C, Allen MJ, Read B, Claverie JM, Ogata H (2009) Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res 19:1441–1449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore RB, Obornik M, Janouškovec J, Chrudimsky T, Vancová M, Green DH et al (2008) A photosynthetic alveolate closely related to Apicomplexan parasites. Nature 451:959–963

    CAS  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):1–8

    Google Scholar 

  • Moreira D, Von Der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogen Evol 55:255–266

    Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ et al (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    CAS  PubMed  Google Scholar 

  • Motte J (1971) Le biocycle. Introduction à l’étude des grands groupes végétaux. Opuscula Botanica, Montpellier, 10:1–253 + 23 plates

    Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Google Scholar 

  • Müller DG, Maier I, Gassman G (1985) Survey on sexual pheromone specificity in Laminariales (Phaeophyceae). Phycologia 24:475–477

    Google Scholar 

  • Nakayama T, Yoshida M, Noel MH, Kawashi M, Inouye I (2005) Ultrastructure and phylogenetic position of Chrysoculter rhomboideus gen. et sp. nov. (Prymnesiophyceae), a new flagellate haptophyte from Japanese coastal waters. Phycologia 44:369–383

    Google Scholar 

  • Neustupa J, Nĕmková Y, Veselá J, Steinová J, Škaloud P (2013) Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms. Phycologia 52(5):411–421

    Google Scholar 

  • Nicolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 101(21):8066–8071

    Google Scholar 

  • Noda S et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    CAS  PubMed  Google Scholar 

  • Not F et al (2007) Picobiliphytes: a marine picoplanctonic algal group with unknown affinities to other Eukaryotes. Science 315:253–255

    CAS  PubMed  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic position of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 55:872–880

    Google Scholar 

  • Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163(2):306–323

    PubMed  Google Scholar 

  • Okamoto N, Inouye I (2005) The Katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Katablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179

    CAS  PubMed  Google Scholar 

  • Ota S, Ueda K, Ishida KI (2007) Norrisiella sphaerica gen. et sp. nov., a new coccoid Chlorarachniophyte from Baja California, Mexico. J Plant Res 120:661–670

    PubMed  Google Scholar 

  • Ota S, Kudo A, Ishida KI (2011) Gymnochlora dimorpha sp. nov., a new chlorarachnophyte with unique daughter cell behaviour. Phycologia 50(3):317–326

    Google Scholar 

  • Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445

    PubMed  Google Scholar 

  • Pasanen AL, Yli-Pietila K, Pasanen P, Kalliokoski P, Tarhanen J (1999) Ergosterol content in various fungal species and biocontaminated building materials. Appl Environ Microbiol 65:138–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson HL, Pesant S, Clode P, Knott B, Waite AM (2007) Systematics of a rare radiolarian – Coelodiceras spinosum Haecker (Sarcodina: Actinopoda: Phaeodaria: Coelodendridae). Deep Sea Res II 54:1094–1102

    Google Scholar 

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistean perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, Lonon, pp 357–379

    Google Scholar 

  • Pawlowski J et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedrós-Alió C (2003) Diversity of microorganisms. In: Vilà M, Rodà F, Ros J (eds) Seminar on biodiversity and biological conservation. Institut d’Estudis Catalans Publ, Barcelona, pp 339–353

    Google Scholar 

  • Pellegrini L (1974) Origine et modifications ultrastructurales du matériel osmiophile contenu dans les physodes et dans certains corps iridescents des cellules végétatives apicales chez Cystoseira stricta Sauvageau (Phéophycée, Fucale). C R Acad Sci 279:903–906

    Google Scholar 

  • Peters AF, Müller DG (1985) On the sexual reproduction of Dictyosiphon foeniculaceus (Phaeophyceae, Dictyosiphonales). Helgol Meeresunters 39:441–447

    Google Scholar 

  • Pitombo LF, Teixeira VL, Kelecom A (1989) Feromônios sexuais de algas pardas. Uma visão quimiosistemática. Insula, Brazil 19(suppl):229–248

    Google Scholar 

  • Prasad AHSK, Nienow JA, Livingstone RJ (1990) The genus Cyclotella (Bacillariophyta) in Choctawhatchee Bay, Florida, with special reference to C. striata and C. choctawhatcheeana sp. nov. Phycologia 29:418–436

    Google Scholar 

  • Puglisi E, Nicelli M, Capri E, Trevisan M, Del Re AAM (2003) Cholesterol, b-sitosterol, ergosterol, and coprostanol in agricultural soils. J Environ Qual 32:466–471

    CAS  PubMed  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE, Bouharmont J (2000) Biologie végétale. De Boeck publication, p 968

    Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Google Scholar 

  • Robert D, Catesson AM (1990) Biologie végétale, tome 2. Caractéristiques et stratégie évolutive des plantes. Organisation végétative. Doin publication, Paris, pp viii + 256

    Google Scholar 

  • Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    CAS  PubMed  Google Scholar 

  • Rokas A (2006) Genomics and the tree of life. Science 313:1897–1898

    CAS  PubMed  Google Scholar 

  • Sakaguchi M, Inagaki Y, Hashimoto T (2007) Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes. Gene 405(1–2):47–54

    CAS  PubMed  Google Scholar 

  • Schaap P et al (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt AR, Dörfelt H, Perrichot V (2007) Carnivorous Fungi from Cretaceous amber. Science 318:1743

    CAS  PubMed  Google Scholar 

  • Schnepf E, Kühn SF, Bulman S (2000) Phagomyxa bellerocheae sp. nov. and Phagomyxa odontellae sp. nov., Plasmodiophoromycetes feeding on marine diatoms. Helgol Mar Res 54:237–241

    Google Scholar 

  • Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139

    Google Scholar 

  • Scott JL, Baca B, Ott FD, West JA (2006) Light and electron microscopic observations on Erythrolobus coxiae gen. et sp. nov. (Porphyridiophyceae, Rhodophyta) from Texas U.S.A. Algae 21:407–416

    Google Scholar 

  • Selosse MA, Le Tacon F (1998) The land flora: a phototroph- fungus partnership? Trends Ecol Evol 13:15–20

    CAS  PubMed  Google Scholar 

  • Seo KS, Fritz L (2002) Diel changes in pyrenoid and starch reserves in dinoflagellates. Phycologia 41:22–28

    Google Scholar 

  • Shalchian-Tabrizi K et al (2006) Telonemia, a new protest phylum with affinity to chromist lineages. Proc Roy Soc B 273:1833–1842

    CAS  Google Scholar 

  • Silberman JD, Collins AG, Gershwin LA, Johnson PJ, Roger AJ (2004) Ellobiopsids of the genus Thalassomyces are Alveolates. J Eukaryot Microbiol 51:246–252

    PubMed  Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematic in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    PubMed  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Google Scholar 

  • Sinninghe-Damsté JS et al (2004) The rise of rhizosolenid diatoms. Science 304:584–587

    Google Scholar 

  • Six C, Worden AZ, Rodríguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of Prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22:2217–2230

    CAS  PubMed  Google Scholar 

  • Šlapeta J, López-García P, Moreira D (2005a) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    PubMed  Google Scholar 

  • Šlapeta J, Moreira D, López-García P (2005b) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Roy Soc B 272:2073–2081

    Google Scholar 

  • Smirnov A, Berney C, Nikolaev S, Pochon X, Pawlowski J (2009) Molecular phylogeny of amoeboid protists. www.biani.unige.ch/msg/Amoeboids/Amoebozoa/html

  • Smith M, Hansen J (2007) Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar Ecol Prog Ser 338:61–70

    Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origin of animal and fungi. Mol Biol Evol 23:93–106

    CAS  PubMed  Google Scholar 

  • Stevenson RN, South GR (1974) Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfounland. Br Phycol Bull 9:319–329

    Google Scholar 

  • Stevenson RN, South GR (1976) Observations on phagocytosis of Coccomyxa parasitica (Coccomyxaceae: Chlorococcales) in Placopecten magellanicus. J Invertebr Pathol 25:307–311

    Google Scholar 

  • Swanberg NR, Anderson OR (1981) Collozoum caudatum sp. nov.: a giant colonial radiolarian from equatorial and Gulf Stream waters. Deep Sea Res 28A(9):1033–1047

    Google Scholar 

  • Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309

    CAS  Google Scholar 

  • Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Lücking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity inthe lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46(4):399–415

    Google Scholar 

  • Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669

    CAS  PubMed  Google Scholar 

  • Todo Y, Kitazato H, Hashimoto J, Gooday AJ (2005) Simple foraminifera flourish at the ocean deepest point. Science 307:689

    CAS  PubMed  Google Scholar 

  • Tregouboff G (1953a) Classe des Radiolaires. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie, Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fasicule II. Masson & Cie, Paris, pp 321–436

    Google Scholar 

  • Tregouboff G (1953b) Classe des Héliozoaires. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie. Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fasicule II. Masson & Cie, Paris, pp 437–489

    Google Scholar 

  • Tréguer P (2002) Les algues et le souffle d’Eole. La Recherche 355:52–53

    Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A et al (2006) Phytophtora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    CAS  PubMed  Google Scholar 

  • Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecology. Blackwell Scientific Publications, Oxford, pp 57–76

    Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1998) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Van De Vijver B, Kopalova K (2008) Orthoseira gremmenii sp. nov., a new aerophylic diatom from Gouth Island (southern Atlantic Ocean). Cryptogamie Algol 29(2):105–118

    Google Scholar 

  • Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O (2010) Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol 10(16):1–15

    Google Scholar 

  • Versteegh GJM, Blokker P, Wood GD, Collinson ME, Damsté JSS, de Leeuw JW (2004) An example of oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Org Geochem 35:1129–1139

    CAS  Google Scholar 

  • Viprey M, Guillou L, Ferréol M, Vaulot D (2008) Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylumbiased PCR approach. Environ Microbiol 10:1804–1822

    CAS  PubMed  Google Scholar 

  • Vogelbein WK, Lovko VJ, Shields JD, Reece KS, Mason PL, Haas LW, Walker CC (2002) Pfiesteria shumwayae kills fish by micropredation not by exotoxin secretion. Nature 418:967–970

    CAS  PubMed  Google Scholar 

  • Webster JP (2001) Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect 3:1037–1045

    CAS  PubMed  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    CAS  PubMed  Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    CAS  PubMed  Google Scholar 

  • Yabuki A, Inagaki Y, Ishida KI (2010) Palpitomonas bilix gen. et sp. nov.: a novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist 161:523–538

    PubMed  Google Scholar 

  • Yoon HS, Ciniglia C, Wu M, Comeron JM, Pinto G, Pollio A, Bhattacharya D (2006a) Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol Biol 6:78

    PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006b) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492

    CAS  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    CAS  PubMed  Google Scholar 

  • Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Salchian-Tabrizi K (2012) Collodictyon – an ancient lineage in the tree of Eukaryotes. Mol Biol Evol 29(6):1557–1568

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-François Boudouresque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boudouresque, CF. (2015). Taxonomy and Phylogeny of Unicellular Eukaryotes. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_7

Download citation

Publish with us

Policies and ethics