Skip to main content

Review of Understanding of Earth’s Hydrological Cycle: Observations, Theory and Modelling

  • Chapter
  • First Online:
  • 2179 Accesses

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 46))

Abstract

Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet’s water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050, ESA Working paper No. 12–03, Agricultural Development Economics Division, Food and Agricultural Organisation of the United Nations, June 2012

    Google Scholar 

  • Bach H, Mauser W (2003) Methods and examples for remote sensing data assimilation in land surface process modelling. IEEE Trans Geosci Remote Sens (TGARSS) 41(7):1629–1637

    Article  Google Scholar 

  • Bach H, Appel F, Rust F, Mauser W (2010) Polar View Snow Service—operational snow cover mapping for downstream Runoff modeling and hydropower predictions. Proceedings of the ESA Living Planet Symposium. ESA Special Publication SP-686, CD-Rom

    Google Scholar 

  • Bach H, Migdall S, Spannraft K, Hank T, Mauser W (2012) Potential and challenges of using sentinel-2 for smart farming; sentinel-2 preparatory symposium, ESA–ESRIN, Frascati, Italy, 23–27

    Google Scholar 

  • Bartsch A, Kidd RA, Pathe C, Scipal K (2007) Satellite radar imagery for monitoring inland wetlands in boreal and sub-arctic environments. Methods 317(3):305–317. doi:10.1002/aqc.836

    Article  Google Scholar 

  • Botteron C, Dawes N, Leclère J, Skaloud J, Weijs SV, Farine P-A (2013) Soil moisture and snow properties determination with GNSS in alpine environments: challenges, status, and perspectives. Remote Sens 5:3516–3543

    Article  Google Scholar 

  • Brenner AC, DiMarzio JP, Zwally HJ (2007) Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Remote Sens 45(2). doi:10.1109/TGRS.2006.887172

    Article  Google Scholar 

  • Brocca L, Melone F, Moramarco T, Morbidelli R (2010a) Spatial-temporal variability of soil moisture and its estimation across scales. Water Resour Res, 46(2), art. no. W02516

    Google Scholar 

  • Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010b) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Syst Sci Dis 14(10):1881–1893. doi:10.5194/hess-14-1881-2010

    Article  Google Scholar 

  • Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Plan Sci Lett 298(3–4):263–274. doi:10.1016/j.epsl.2010.07.035

    Article  CAS  Google Scholar 

  • CEOS (2013) The Earth observation handbook—special edition for rio + 20 Updated for 2014. http://www.eohandbook.com

  • Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the colorado river basin. Clim Change 62:337–363

    Article  Google Scholar 

  • Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modelling approaches. Irrigat Drain Syst 19(3):223–249

    Article  Google Scholar 

  • Curtis S, Salahuddin A, Adler RF, Huffman GJ, Gu G, Hong Y (2007) Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J Hydrometeorol. doi:10.1175/JHM601.1

    Article  Google Scholar 

  • DeFries R (2008) Terrestrial vegetation in the coupled human-Earth system: contributions of remote sensing. Ann Rev Environ Resour 2008(33):369–390. doi:10.1146/annurev.environ.33.020107.113339

    Article  Google Scholar 

  • Dorigo WA, De Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39:L18405. doi:10.1029/2012GL052988

    Article  Google Scholar 

  • Doubková M, Wagner W, De Jeu RAM (2011) Water from space: soil moisture and landscape dynamics. WIRADA Science Symposium, Melbourne

    Google Scholar 

  • Doubková M, Van Dijk AIJM, Sabel D, Wagner W, Blöschl G (2012) Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sens Environ 120:188–196

    Article  Google Scholar 

  • Dyurgerov MB, Mark FM (2005) Glaciers and the changing Earth system: a 2004 Snapshot. Institute of Arctic and Alpine Research. Occasional paper 58

    Google Scholar 

  • ESA (2012) The biomass mission. Report for mission selection—ESA SP-1324/1. http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf

  • ESA (2013) ERS missions, 20 years of observing Earth. ESA SP-1326, ESA Communications, Fletcher K (ed), ISBN 978-92-9221-424-1, Leiden July 2013

    Google Scholar 

  • Ferguson IM, Maxwell RM (2012) Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. Environ Res Lett 7(2012) 044022 (8pp). doi:10.1088/1748-9326/7/4/044022

    Article  Google Scholar 

  • Font J, Camps A, Borges A, Martín-Neira M, Boutin J, Reul N, Kerr YH, Hahne A, Mecklenburg S (2010) SMOS: the challenging sea surface salinity measurement from space. Proc IEEE 98:649–665

    Article  CAS  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling—review. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Frei A, Tedesco M, Lee S, Foster J, Hall DK, Kelly R, Robinson DA (2012) A review of global satellite-derived snow products. Adv Space Res 50:1007–1029

    Article  Google Scholar 

  • GCOS (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS– 82 (WMO/TD No. 1143) April 2003. (http://www.wmo.int/pages/prog/gcos/Publications/gcos-82_2AR.pdf)

  • Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li Y, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320:1626–1629

    Article  CAS  Google Scholar 

  • Hibbard K, Janetos A, van Vuuren DP, Pongratz J, Rose SK, Betts R, Herold M, Feddema JJ (2010) Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int J Climatol 30: 2118–2128. doi:10.1002/joc.2150

    Article  Google Scholar 

  • Hornacek M, Wagner W, Sabel D, Truong H, Snoeij P, Hahmann T, Diedrich E et al (2012) Potential for high resolution systematic global surface soil moisture retrieval via change detection using sentinel-1. IEEE J Sel Top Appl Earth Observation Remote Sens 5(4):1303–1311

    Article  Google Scholar 

  • IGOS (2007) Integrated Global Observing Strategy Cryosphere Theme Report, August 2007, WMO/TD No 1405

    Google Scholar 

  • Jiménez C et al (2011) Global intercomparison of 12 land surface heat flux estimates. J Geophys Res 116:D02102. doi:10.1029/2010JD014545

    Article  Google Scholar 

  • Kalma JT, McVicar M, McCabe M (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys Geophys 29(4):421–469

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ et al (2010) The SMOS L: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687

    Article  Google Scholar 

  • Le Vine DM, Lagerloef GSE, Torrusio SE (2010) Aquarius and remote sensing of sea surface salinity from Space. Proceedings of the IEEE 98(5) 688–703. doi:10.1109/JPROC.2010.2040550

    Article  CAS  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. Climate Change: the physical science basis; summary for policymakers, technical summary and frequently asked questions. Part of the Working Group I contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ISBN: 92-9169-121-6. hdl:10013/epic.30870

    Google Scholar 

  • Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner WM, Van Dijk AIJ, McCabe MF et al (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436

    Article  Google Scholar 

  • Loew A, Ludwig R, Mauser W (2006) Derivation of surface soil moisture from ENVISAT ASAR WideSwath and image mode data in agricultural areas. IEEE Trans Geosci Remote Sens 44(4):889–899

    Article  Google Scholar 

  • Loew A, Stacke T, Dorigo W, de Jeu R, Hagemann S (2013) Potential and limitations of multidecadal satellite moisture observations for climate model evaluation studies. Hydrol Earth Syst Sci 17:3523–3542. doi:10.5194/hess-17-3523-2013

    Article  Google Scholar 

  • Lonfat M, Marks FD, Chen SS (2004) Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: a global perspective. Mon Weather Rev. doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2

    Article  Google Scholar 

  • Ludwig F, Kabat P, van Schaik H, van der Valk M (eds) (2008) Climate change adaptation in the water sector, Earthscan, London

    Google Scholar 

  • Matgen P, Hasenauer S, Hissler C, Brocca L, Hoffmann L, Wagner W, Savenije HHG (2011) On the potential of MetOp ASCAT-derived soil wetness data hydrological monitoring and due to limited prediction: SAR evaluation over Luxembourg lack of coverage. Hydrol Process. doi:10.1002/hyp

    Article  Google Scholar 

  • Mauser W (2009) Water resources: efficient, sustainable and equitable use, the sustainability project. House Publishing, London

    Google Scholar 

  • Mauser W, Bach H (2009) PROMET—large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J Hydrol 376(2009):362–377. doi:10.1016/j.jhydrol.2009.07.046

    Article  Google Scholar 

  • McNamara JP, Kane DL, Hinzman LD (1999) An analysis of an arctic channel network using digital elevation model. Geomorphology 29:339–353

    Article  Google Scholar 

  • Meier P, Frömelt A, Kinzelbach W (2011) Hydrological real-time modelling in the Zambezi river basin using satellite-based soil moisture and rainfall data. Hydrol Earth Syst Sci 15(3):999–1008. doi:10.5194/hess-15-999-2011

    Article  Google Scholar 

  • Meyssignac B, Cazenave A (2012) Sea level: a review of present-day and recent-past changes and variability. J Geodyn 58:96–109

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and Environment. In: The state and movement of water in living organism. 19th Symp Soc Exptl Biol 205–234

    Google Scholar 

  • Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Fisher JB, Jung M, Ludwig F, Maignan F, Miralles D, McCabe MF, Reichstein M, Sheffield J, Wang KC, Wood EF, Zhang Y, Seneviratne SI (2013) Benchmark products for land evapotranspiration: landFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci 17:3707–3720

    Article  Google Scholar 

  • Naeimi V, Bartalis Z, Wagner W (2009) ASCAT soil moisture: an assessment of the data quality and consistency with the ERS scatterometer heritage. J Hydrometeorol 10(2):555–563

    Article  Google Scholar 

  • Nghiem S, Tsai W-Y (2001) Global snow cover monitoring with space-borne Ku-band scatterometer. IEEE Trans Geosci Remote Sens 39(10):2118–2134

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi:10.1126/science.1128845

    Article  CAS  Google Scholar 

  • Parajka J, Naeimi V, Blöschl G, Wagner W, Merz R, Scipal K (2006) Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol Earth Syst Sci 10(3):353–368. doi:10.5194/hess-10-353-2006

    Article  Google Scholar 

  • Pathe C, Wagner W, Sabel D, Doubkova M, Basara J (2009) Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Trans Geosci Remote Sens 47(2):468–480

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. P Roy Soc Lon Ser- A 193(1032):120–145

    Article  CAS  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudre N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS 104(39): 15242–15247. doi:10.1073/pnas.0707213104

    Article  CAS  Google Scholar 

  • Prasch M, Mauser W, Weber M (2013) Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. The Cryosphere 7:889–904. doi:10.5194/tc-7-889-2013

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat fluxes and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112(D12):1993–2000. doi:10.1029/2006JD007847

    Article  Google Scholar 

  • Ramamoorthi AS (1983) Snow-melt run-off studies using remote sensing data. Proceedings of the Indian Academy of Sciences, Section C: Engineering Sciences, Sept 1983, 6(3): 279–286. doi:10.1007/BF02842888

  • Reul N, Fournier S, Boutin J, Hernandez O, Maes C, Chapron B, Alory G, Quilfen Y, Tenerelli J, Morisset S, Kerr Y, Mecklenburg S, Delwart S (2013) Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle. Surv Geophys. doi:10.1007/s10712-013-9244-0

    Article  Google Scholar 

  • Richter K, Hank T, Voulo F, Mauser W, D’Urso G (2012) Optimal exploitation of the sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens 4(3):561–582

    Article  Google Scholar 

  • Rignot E, MacAyeal DR (1998) Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. J Glaciol 44(147):405–418

    Article  Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256. doi:10.1016/S0022-1694(02)00060-4

    Article  Google Scholar 

  • Rodriguez JM, Ustin SL, Riano D (2011) Contributions of imaging spectroscopy to improve estimates of evapotranspiration. Hydrol Process 25:4069–4081. doi:10.1002/hyp.8368

    Article  CAS  Google Scholar 

  • Rott (2013) Contribution to EO sentinel convoy—ocean and ice theme final report, produced under ESA contract, ESA, Astrium Limited Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, UK

    Google Scholar 

  • Rott H, Siegel A (1997) Glaciological studies in the alps and in Antarctica using ERS interferometric SAR. ESA SP-406: Conference proceedings of Fringe’96 (Zürich, Switzerland 30 Sept–2 Oct). European Space Agency

    Google Scholar 

  • Schlüssel P, Soloviev AV, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Bound-Layer Meteorol 82(3):439–474

    Article  Google Scholar 

  • Schmitt RW (1995) The ocean component of the global water cycle: US National Report to International Union of Geodesy and Geophysics, 1991–1994. Rev Geophys 33(Supplement):1395–1409

    Article  Google Scholar 

  • Schmitt RW (2008) Salinity and the global water cycle. Oceanography 21(1):12

    Article  Google Scholar 

  • Shepherd A, Wingham D (2002) Recent Sea-level contributions of the Antarctic and Greenland Ice Sheets. Science 315:1529–1533. doi:10.1126/science.1136776

    Article  CAS  Google Scholar 

  • Shepherd A, Ivins ER, Valentina GA, Barletta R, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin NH, Jacobs S, Joughin I, King Lenaerts, JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ, (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183. doi:10.1126/science.1228102

    Article  CAS  Google Scholar 

  • Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific Warm Pool. J Phys Oceanogr. doi:10.1175/1520-0485(1996

    Article  Google Scholar 

  • Strengers BJ, Müller C, Schaeffer M, Haarsma RJ, Severijns C, Gerten D, Schaphoff S, van den Houdt R, Oostenrijk R (2010) Assessing 20th century climate–vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int J Climatol 30:2055–2065. doi:10.1002/joc.2132

    Article  Google Scholar 

  • Su Z, Wen J, Wagner W (2010) Advances in land surface hydrological processes—field observations, modeling and data assimilation. Hydrol Earth Syst Sci 14:365–367. www.hydrol-earth-syst-sci.net/14/365/2010/

  • Turner K, Georgiou S, Clark R, Brouwer R, Burke K (2004) Economic valuation of water resources in agriculture, FAO Water Reports 27. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Van Dijk AIJM, Renzullo LJ (2011) Water resource monitoring systems and the role of satellite observations. Hydrol Earth Syst Sci 15(1):39–55. doi:10.5194/hess-15-39-201

    Article  Google Scholar 

  • Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70(2):191–207

    Article  Google Scholar 

  • Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration. Rev Geophys 50(2): RG2005. doi:10.1029/2011RG000373

  • Wijesekera HW, Paulson CA, Huyer A (1999) The effect of rainfall on the surface layer during a Westerly Wind Burst in the Western Equatorial Pacific. J Phys Oceanogr. doi:10.1175/1520-0485

    Article  Google Scholar 

  • Wingham DJ, Francis CR, Baker S, Bouzinac C, Brockley D, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U, Mavrocordatos B, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis DW (2006) CryoSat: a mission to determine the fluctuations in Earth’s land and marine ice fields. Adv Space Res 37(4):841–871

    Article  Google Scholar 

  • Wood EF, Roundy JK, Troy TJ, van Beek R, Bierkens M, Blyth E, de Roo A, Doell P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffe P, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyper-resolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47:W05301. doi:10.1029/2010WR010090

    Article  Google Scholar 

  • Zabel F, Mauser W (2013) 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol Earth Syst Sci 17:1705–1714. doi:10.5194/hess-17-1705-2013

    Article  Google Scholar 

  • Zhang T, Barry RG, Haeberli W (2001) Numerical simulation of the influence of the seasonal snow cover on the occurrence of permafrost at high latitudes. Nor Geogr Tidsskr 55(2001):261–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rast, M., Johannessen, J., Mauser, W. (2014). Review of Understanding of Earth’s Hydrological Cycle: Observations, Theory and Modelling. In: Bengtsson, L., et al. The Earth's Hydrological Cycle. Space Sciences Series of ISSI, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8789-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8789-5_2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8788-8

  • Online ISBN: 978-94-017-8789-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics