Skip to main content

Assessment of Itch and Pain in Animal Models and Human Subjects

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 904))

Abstract

For the past century, scientists have developed a variety of methods to evaluate itch and pain in both animal models and human subjects to throw light on some of the most important pathways mediating these unpleasant sensations. Discoveries in the mechanisms underlying itch and pain in both physiological and pathological conditions relied greatly upon these studies and may eventually lead to the discovery of new therapeutics. However, it was a much more complicated job to access itch and pain in animal models than in human subjects due to the subjective nature of these sensations. The results could be contradictory or even misleading when applying different methodologies in animal models, especially under pathological conditions with a mixed sensation of itch and pain. This chapter introduces and evaluates some of the classical and newly designed methodologies to access the sensation of itch and pain in animal models as well as human subjects.

*These authors contribute equally to this manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama T, Carstens E. Neural processing of itch. Neuroscience. 2013;250:697–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama T, Carstens MI, Carstens E. Differential itch- and pain-related behavioral responses and micro-opoid modulation in mice. Acta Derm Venereol. 2010;90:575–81.

    Article  CAS  PubMed  Google Scholar 

  • Andersen HH, Elberling J, Arendt-Nielsen L. Human surrogate models of histaminergic and non-histaminergic itch. Acta Derm Venereol. 2015;95:771–7.

    Article  PubMed  Google Scholar 

  • Andoh T, Sakai K, Urashima M, Kitazawa K, Honma A, Kuraishi Y. Involvement of leukotriene B4 in itching in a mouse model of ocular allergy. Exp Eye Res. 2012;98:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Ankier SI. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol. 1974;27:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Attal N, Jazat F, Kayser V, Guilbaud G. Further evidence for ‘pain-related’ behaviours in a model of unilateral peripheral mononeuropathy. Pain. 1990;41:235–51.

    Article  CAS  PubMed  Google Scholar 

  • Bardo MT, Hughes RA. Exposure to a nonfunctional hot plate as a factor in the assessment of morphine-induced analgesia and analgesic tolerance in rats. Pharmacol Biochem Behav. 1979;10:481–5.

    Article  CAS  PubMed  Google Scholar 

  • Barrett JE. The pain of pain: challenges of animal behavior models. Eur J Pharmacol. 2015;753:183–90.

    Article  CAS  PubMed  Google Scholar 

  • Beecher HK. The measurement of pain; prototype for the quantitative study of subjective responses. Pharmacol Rev. 1957;9:59–209.

    CAS  PubMed  Google Scholar 

  • Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  CAS  PubMed  Google Scholar 

  • Bickford R. Experiments relating to the itch sensation, its peripheral mechanism, and central pathways. Clin Sci. 1938;3:377–86.

    Google Scholar 

  • Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology (Bethesda). 2008;23:371–80.

    Article  Google Scholar 

  • Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: towards a rational method. J Neurosci Methods. 2015;255:92–103.

    Article  PubMed  Google Scholar 

  • Broadbent JL. Observations on itching produced by cowhage, and on the part played by histamine as a mediator of the itch sensation. Br J Pharmacol Chemother. 1953;8:263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromm B, Scharein E, Darsow U, Ring J. Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett. 1995;187:157–60.

    Article  CAS  PubMed  Google Scholar 

  • Carstens E, Wilson C. Rat tail flick reflex: magnitude measurement of stimulus-response function, suppression by morphine and habituation. J Neurophysiol. 1993;70:630–9.

    CAS  PubMed  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Chapman CR. Evoked potentials as correlates of pain and pain relief in man. Agents Actions Suppl. 1986;19:51–73.

    CAS  PubMed  Google Scholar 

  • Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59:369–76.

    Article  CAS  PubMed  Google Scholar 

  • Cizza G, Sternberg EM. The role of the hypothalamic-pituitary-adrenal axis in susceptibility to autoimmune/inflammatory disease. Immunomethods. 1994;5:73–8.

    Article  CAS  PubMed  Google Scholar 

  • Cunha TM, Verri WJ, Vivancos GG, Moreira IF, Reis S, Parada CA, Cunha FQ, Ferreira SH. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res. 2004;37:401–7.

    Article  CAS  PubMed  Google Scholar 

  • D’Amore A, Chiarotti F, Renzi P. High-intensity nociceptive stimuli minimize behavioral effects induced by restraining stress during the tail-flick test. J Pharmacol Toxicol Methods. 1992;27:197–201.

    Article  PubMed  Google Scholar 

  • Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 2010;33:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–62.

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.

    Article  CAS  PubMed  Google Scholar 

  • Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4:161–74.

    Article  CAS  PubMed  Google Scholar 

  • Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol. 2007;119:176–83.

    Article  CAS  PubMed  Google Scholar 

  • Fioravanti B, De Felice M, Stucky CL, Medler KA, Luo MC, Gardell LR, Ibrahim M, Malan TJ, Yamamura HI, Ossipov MH, King T, Lai J, Porreca F, Vanderah TW. Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci. 2008;28:11593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frese T, Herrmann K, Sandholzer H. Pruritus as reason for encounter in general practice. J Clin Med Res. 2011;3:223–9.

    PubMed  PubMed Central  Google Scholar 

  • Gabriel AF, Marcus MA, Honig WM, Walenkamp GH, Joosten EA. The CatWalk method: a detailed analysis of behavioral changes after acute inflammatory pain in the rat. J Neurosci Methods. 2007;163:9–16.

    Article  CAS  PubMed  Google Scholar 

  • Gegout-Pottie P, Philippe L, Simonin MA, Guingamp C, Gillet P, Netter P, Terlain B. Biotelemetry: an original approach to experimental models of inflammation. Inflamm Res. 1999;48:417–24.

    Article  CAS  PubMed  Google Scholar 

  • Hagermark O. Influence of antihistamines, sedatives, and aspirin on experimental itch. Acta Derm Venereol. 1973;53:363–8.

    CAS  PubMed  Google Scholar 

  • Handwerker HO, Kobal G. Psychophysiology of experimentally induced pain. Physiol Rev. 1993;73:639–71.

    CAS  PubMed  Google Scholar 

  • Hardy JD, Wolff HG, Goodell H. Studies on pain. A new method for measuring pain threshold: observations on spatial summation of pain. J Clin Invest. 1940;19:649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.

    Article  CAS  PubMed  Google Scholar 

  • Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985;14(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  • IASP. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain. 1979;6:249.

    Google Scholar 

  • Ikoma A, Handwerker H, Miyachi Y, Schmelz M. Electrically evoked itch in humans. Pain. 2005;113:148–54.

    Article  PubMed  Google Scholar 

  • Inagaki N, Nagao M, Igeta K, Kawasaki H, Kim JF, Nagai H. Scratching behavior in various strains of mice. Skin Pharmacol Appl Skin Physiol. 2001;14:87–96.

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Andersen HO, Olesen J, Lindblom U. Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer. Pain. 1986;25:313–23.

    Article  CAS  PubMed  Google Scholar 

  • Johanek LM, Meyer RA, Hartke T, Hobelmann JG, Maine DN, LaMotte RH, Ringkamp M. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J Neurosci. 2007;27:7490–7.

    Article  CAS  PubMed  Google Scholar 

  • Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98:8077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Park GH, Kim D, Lee J, Min H, Wall E, Lee CJ, Simon MI, Lee SJ, Han SK. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A. 2011;108:3371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein A, Carstens MI, Carstens E. Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons. J Neurophysiol. 2011;106:1078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraishi Y, Nagasawa T, Hayashi K, Satoh M. Scratching behavior induced by pruritogenic but not algesiogenic agents in mice. Eur J Pharmacol. 1995;275:229–33.

    Article  CAS  PubMed  Google Scholar 

  • Laidlaw A, Flecknell P, Rees JL. Production of acute and chronic itch with histamine and contact sensitizers in the mouse and guinea pig. Exp Dermatol. 2002;11:285–91.

    Article  CAS  PubMed  Google Scholar 

  • LaMotte RH, Shimada SG, Sikand P. Mouse models of acute, chemical itch and pain in humans. Exp Dermatol. 2011;20:778–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lembo PM, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Strom P, Payza K, Dray A, Walker P, Ahmad S. Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci. 2002;5:201–9.

    Article  CAS  PubMed  Google Scholar 

  • Martinov T, Mack M, Sykes A, Chatterjea D. Measuring changes in tactile sensitivity in the hind paw of mice using an electronic von Frey apparatus. J Vis Exp. 2013;82:e51212.

    PubMed  Google Scholar 

  • Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975;1:277–99.

    Article  CAS  PubMed  Google Scholar 

  • Minami K, Kamei C. A chronic model for evaluating the itching associated with allergic conjunctivitis in rats. Int Immunopharmacol. 2004;4:101–8.

    Article  CAS  PubMed  Google Scholar 

  • Mogil JS. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A. 1999;96:7744–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Takahashi Y, Ono R, Kurata Y, Kagawa Y, Kamei C. Role of histamine H(4) receptor in allergic conjunctivitis in mice. Eur J Pharmacol. 2009;608:71–5.

    Article  CAS  PubMed  Google Scholar 

  • Nirogi R, Goura V, Shanmuganathan D, Jayarajan P, Abraham R. Comparison of manual and automated filaments for evaluation of neuropathic pain behavior in rats. J Pharmacol Toxicol Methods. 2012;66:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Papoiu AD, Tey HL, Coghill RC, Wang H, Yosipovitch G. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch. PLoS One. 2011;6:e17786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel T, Yosipovitch G. Therapy of pruritus. Expert Opin Pharmacother. 2010;11:1673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–72.

    Article  CAS  PubMed  Google Scholar 

  • Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol. 2002;12:195–204.

    Article  CAS  PubMed  Google Scholar 

  • Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957;111:409–19.

    CAS  PubMed  Google Scholar 

  • Reddy VB, Lerner EA. Plant cysteine proteases that evoke itch activate protease-activated receptors. Br J Dermatol. 2010;163:532–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossbach K, Wendorff S, Sander K, Stark H, Gutzmer R, Werfel T, Kietzmann M, Baumer W. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp Dermatol. 2009;18:57–63.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz M, Michael K, Weidner C, Schmidt R, Torebjork HE, Handwerker HO. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport. 2000;11:645–8.

    Article  CAS  PubMed  Google Scholar 

  • Shelley WB, Arthur RP. Mucunain, the active pruritogenic proteinase of cowhage. Science. 1955;122:469–70.

    Article  CAS  PubMed  Google Scholar 

  • Shim WS, Oh U. Histamine-induced itch and its relationship with pain. Mol Pain. 2008;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada SG, LaMotte RH. Behavioral differentiation between itch and pain in mouse. Pain. 2008;139(3):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikand P, Shimada SG, Green BG, LaMotte RH. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain. 2009;144:66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikand P, Shimada SG, Green BG, LaMotte RH. Sensory responses to injection and punctate application of capsaicin and histamine to the skin. Pain. 2011;152:2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simone DA, Alreja M, LaMotte RH. Psychophysical studies of the itch sensation and itchy skin (“alloknesis”) produced by intracutaneous injection of histamine. Somatosens Mot Res. 1991;8:271–9.

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol. 1999;82:3347–58.

    CAS  PubMed  Google Scholar 

  • Swerdlow NRGD. Neuromethods: Psycho-pharmacology. Clifton: Humana Press; 2000. p. 399–446.

    Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A. Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci. 2013;123:284–7.

    Article  CAS  PubMed  Google Scholar 

  • Tonussi CR, Ferreira SH. Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain. 1992;48:421–7.

    Article  CAS  PubMed  Google Scholar 

  • Trentin PG, Fernandes MB, D’Orleans-Juste P, Rae GA. Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood). 2006;231:1146–51.

    CAS  Google Scholar 

  • Tuckett RP. Itch evoked by electrical stimulation of the skin. J Invest Dermatol. 1982;79:368–73.

    Article  CAS  PubMed  Google Scholar 

  • van Laarhoven AI, Kraaimaat FW, Wilder-Smith OH, van de Kerkhof PC, Evers AW. Heterotopic pruritic conditioning and itch–analogous to DNIC in pain? Pain. 2010;149:332–7.

    Article  PubMed  Google Scholar 

  • Van Ree JM, Leys A. Behavioral effects of morphine and phencyclidine in rats: the influence of repeated testing before and after single treatment. Eur J Pharmacol. 1985;113:353–62.

    Article  PubMed  Google Scholar 

  • Vrinten DH, Hamers FF. ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain. 2003;102:203–9.

    Article  PubMed  Google Scholar 

  • Watling KJ, Guard S, Boyle SJ, McKnight AT, Woodruff GN. Species variants of tachykinin receptor types. Biochem Soc Trans. 1994;22:118–22.

    Article  CAS  PubMed  Google Scholar 

  • Watson GS, Sufka KJ, Coderre TJ. Optimal Scoring strategies and weights for the formalin test in rats. Pain. 1997;70(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011;14:595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, Lumpkin EA, Bautista DM. The ion channel TRPA1 is required for chronic itch. J Neurosci. 2013;33:9283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W. Animal models of pain: Chapter 1 Assessment of pain in animals. In: Xie W, editor. Neuromethods. Clifton: Humana Press; 2011. p. 1–21.

    Google Scholar 

  • Zhang JM, Li H, Brull SJ. Perfusion of the mechanically compressed lumbar ganglion with lidocaine reduces mechanical hyperalgesia and allodynia in the rat. J Neurophysiol. 2000;84:798–805.

    CAS  PubMed  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45:17–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Science Foundation of China #81271239 (C.M.), the IBMS/CAMS Dean’s Fund #2011RC01 (C.M.), and the PUMC Youth Fund (X.S. and C.M.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuguang Huang or Chao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yuan, T. et al. (2016). Assessment of Itch and Pain in Animal Models and Human Subjects. In: Ma, C., Huang, Y. (eds) Translational Research in Pain and Itch. Advances in Experimental Medicine and Biology, vol 904. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7537-3_1

Download citation

Publish with us

Policies and ethics