Skip to main content

Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses)

  • Chapter
When do fishes become juveniles?

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 19))

Synopsis

Lack of knowledge of early and juvenile development often makes it difficult to decide when a fish becomes a juvenile or, for that matter, a definitive phenotype. According to the e;tablished life-history model, a fish develops naturally in a saltatory manner, its entire life consisting of a sequence of stabilized self-organizing steps, separated by distinct less stabilized thresholds. Changes are usually introduced during thresholds. In principle, there are two ways to reach the juvenile period: by indirect or by direct development. Ind:.rectly developing fishes have a distinct larva period that ends in a cataclysmic or mild remodeling process, called metamorphosis, from which the fishes emerge as juveniles. During metamorphosis, most temporary organs and structures of the embryos and larvae are replaced by definitive organs and structures that are also possessed by the adults. In contrast, directly developing fishes have no larvae. Their embryos develop directly into juveniles and do not need major remodeling. Consequently, the beginning of their juvenile period is morphologically and functionally less distinct than in indirect development. The life-history model helps to find criteria that identify the natural boundaries between the different periods in the life of a fish, among them, the beginning of the juvenile period. Looking at it from a different angle, when ontogeny progresses from small eggs with little yolk, larvae are required as the necessary providers of additional nutrients (‘feeding entities’ similar to amphibian tadpoles or butterfly caterpillars) in order to accumulate materials for the metamorphosis into the definitive phenotypes. Directly developing fishes start with large demersal eggs provided with an adequate volume of high density yolk and so require no or little external nutrients to develop into the definitive phenotype. These large eggs are released and develop in concentrated clutches. It therefore becomes possible and highly effective to guard them in nests or bear them in external pouches, gill chambers or the buccal cavity. Viviparity is the next natural step. Now the maternal investment into large yolks can be supplemented or replaced by direct food supply to the developing embryos like, for example, the secretion of uterine histotrophe or nutrient transfer via placental analogues. When the young of guarders and bearers start exogenous feeding, they are much larger or better developed than larvae of nonguarders and the larva period in the former is reduced to a vestige or eliminated entirely. In the latter case, the juvenile period begins with the first exogenous feeding. Such precocial fishes are more specialized and able to survive better in competitive environments. In contrast, altricial forms retain or revert to a life-history style with indirect development and high fecundity when dispersal is advantageous or essential. Fishes become juveniles when the definitive phenotype is formed in most structures, either indirectly from a larva via metamorphosis or directly from the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Allen, G.R. and R.C. Steene. 1995. Notes on the ecology and behaviour of the Indonesian cardinalfish (Apogonidae) Pteragon kauderni Koumans. Rev. Franc. Aquariol. 22 (1–2): 7–9.

    Google Scholar 

  • Amarullah, M.H., Subiyanto, T. Noichi, K. Shigemitsu, Y. Tamamoto and T. Senta. 1991. Settlement of larval Japanese flounder (Paralichthys olivaceus) along Yanagihama Beach, Nagasaki Prefecture. Bull. Fac. Fish. Nagasaki Univ. 70: 7–12.

    Google Scholar 

  • Bagenal, T.B. 1971. The interrelation of the size of fish eggs, the date of spawning and the production cycle. J. Fish Biol. 3: 207–219.

    Google Scholar 

  • Balinsky, B.I. and B.C. Fabian. 1981. An introduction to embryology, 5th edition. Saunders College Publishing, Philadelphia. 768 pp.

    Google Scholar 

  • Balon, E. 1956a. Vÿvoj hlavätky [Hucho hucho (L)] pocas endogénneho spôsobu vÿzivy po vyliahnutí ( Postembryonic development of the huchen during the time of endogenous feeding ). Pol’nohospodärstvo 3: 433–455 (in Slovak).

    Google Scholar 

  • Balon, E. 1956b. Neres a postembryonälny vÿvoj plotice (Rutilus rutilus ssp.) ( Spawning and postembryonic development of the roach ). Biologické präce 2: 7–60.

    Google Scholar 

  • Balon, E. 1958. Vÿvoj dunajského kapra (Cyprinus carpio carpio L.) v priebehu predlarvälnej fäzy a larvälnej periódy ( Development of the Danubian carp during the prelarval phase and larval period ). Biologické präce 4: 5–54.

    Google Scholar 

  • Balon, E.K. 1959a. Die Entwicklung des akklimatisierten Lepomis gibbosus (Linné 1748) während der embryonalen Periode in den Donauseitenwassern. Zeitschrift für Fischerei 8: 1–27.

    Google Scholar 

  • Balon, E.K. 1959b. Die Entwicklung der Texas-Cichlide (Herichthys cyanoguttatus Baird et Girard) nach dem Schlüpfen. Zoologischer Anzeiger 162: 339–355.

    Google Scholar 

  • Balon, E.K. 1959c. Die embryonale and larvale Entwicklung der Donauzope (Abramis ballerus subsp.). Biologické präce 5: 1–87.

    Google Scholar 

  • Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.

    Google Scholar 

  • Balon, E.K. 1977. Early ontogeny of Labeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on advanced protective styles in fish reproduction and development. Env. Biol. Fish. 2: 147–176.

    Google Scholar 

  • Balon, E.K. 1978. Reproductive guilds and the ultimate structure of fish taxocenes: amended contribution to the discussion presented at the mini-symposium. Env. Biol. Fish. 3: 149–152. (reprinted in Dev. Env. Biol. Fish. 5: 83–86, 1985).

    Google Scholar 

  • Balon, E.K. 1979a. The theory of saltation and its application in the ontogeny of fishes: steps and thresholds. Env. Biol. Fish. 4: 97–101.

    Google Scholar 

  • Balon, E.K. 1979b. The juvenilization process in phylogeny and the altricial to precocial forms in the ontogeny of fishes. Env. Biol. Fish. 4: 193–198.

    Google Scholar 

  • Balon, E.K. 1980a. Early ontogeny of the lake charr, Salvelinus (Cristivomer) namaycush. pp. 485–562. In: E.K. Balon (ed.) Charrs: Salmonid Fishes of the Genus Salvelinus, Perspectives in Vertebrate Science 1, Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Balon, E.K. 1980b. Early ontogeny of the North American landlocked arctic charr-sunapee Salvelinus (Salvelinus) alpinus oquassa. pp. 568–606. In: E.K. Balon (ed.) Charrs: Salmonid Fishes of the Genus Salvelinus, Perspectives in Vertebrate Science 1, Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Balon, E.K. 1981a. Saltatory processes and altricial to precocial forms in the ontogeny of fishes. Amer. Zool. 21: 573–596.

    Google Scholar 

  • Balon, E.K. 1981b. Additions and amendments to the classification of reproductive styles in fishes. Env. Biol. Fish. 6: 377–390.

    Google Scholar 

  • Balon, E.K. 1981c. About processes which cause the evolution of guilds and species. Env. Biol. Fish. 6: 129–138.

    Google Scholar 

  • Balon, E.K. 1983. Epigenetic mechanisms: reflections on evolu- tionary processes. Can. J. Fish. Aquat. Sci. 40: 2045–2058.

    Google Scholar 

  • Balon, E.K. 1984. Reflections on some decisive events in the early life of fishes. Trans. Amer. Fish. Soc. 113: 178–185.

    Google Scholar 

  • Balon, E.K. (ed.) 1985. Early life histories of fishes: new developmental, ecological and evolutionary perspectives. Dev. in Env. Biol. Fish. 5, Dr W. Junk Publishers, Dordrecht. 280 pp.

    Google Scholar 

  • Balon, E.K. 1986a. Saltatory ontogeny and evolution. Rivista di Biologia/Biology Forum 79: 151–190.

    CAS  PubMed  Google Scholar 

  • Balon, E.K. 1986b. Types of feeding in the ontogeny of fishes and the life-history model. Env. Biol. Fish. 16: 11–24.

    Google Scholar 

  • Balon, E.K. 1988a. Tao of life: universality of dichotomy in biology. 1. The mystic awareness. Rivista di Biologia/Biology Forum 81: 185–230.

    Google Scholar 

  • Salon, E.K. 1988b. Tao of life: universality of dichotomy in biology. 2. The epigenetic mechanisms. Rivista di Biologia/Biology Forum 81: 339–380.

    Google Scholar 

  • Balon, E.K. 1989a. The Tao of life: from the dynamic unity of polar opposites to self-organization. pp. 7–40. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Balon, E.K. 1989b. The epigenetic mechanisms of bifurcation and alternative life-history styles. pp. 467–501. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Balon, E.K. 1989e. The confessions of s structuralist. Rivista di Biologia/Biology Forum 82: 135–136.

    Google Scholar 

  • Balon, E.K. 1990. Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyol. Rev. 1: 1–42.

    Google Scholar 

  • Balon, E.K. 1991. Probable evolution of the coelacanth’s reproductive style: lecithotrophy and orally feeding embryos in cichlid fishes and in Latimeria chalumnae. Env. Biol. Fish. 32: 249–265.

    Google Scholar 

  • Balon, E.K. and M.N. Bruton. 1994. Fishes of the Tatinga River, Comoros, with comments on freshwater amphidromy in the goby Sicyopterus lagocephalus. Ichthyol. Explor. Freshwat. 5: 25–40.

    Google Scholar 

  • Balon, E.K. and C. Flegler-Balon. 1985. Microscopic techniques for studies of early ontogeny in fishes: problems and methods of composite descriptions. pp. 33–56. In: E.K. Balon (ed.) Early Life Histories of Fishes: New Developmental, Ecological and Evolutionary Perspectives, Dev. in Env. Biol. Fish. 5, Dr W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Barlow, G.W. 1981. Patterns of parental investment, dispersal and size among coral-reef fishes. Env. Biol. Fish. 6: 65–85.

    Google Scholar 

  • Bateson, M.C. 1984. With a daughter’s eye. William Morrow and Comp., New York. 242 pp.

    Google Scholar 

  • Bell. J.D., M. Westoby and A.S. Steffe. 1987. Fish larvae settling in seagrass: do they discriminate between beds of different leaf density. J. exp. Mar. Biol. Ecol. 111: 133–144.

    Google Scholar 

  • Blaxter, J.H.S. 1988. Pattern and variety in development. pp. 1–58. In: W.S. Hoar and D.J. Randall (ed.) Fish Physiology, volume 11A Eggs and Larvae, Academic Press, San Diego.

    Google Scholar 

  • Bond, C.E. 1996. Biology of fishes, 2nd ed. Saunders College Publishing, Philadelphia. 750 pp.

    Google Scholar 

  • Booth, D.J. 1992. Larval settlement patterns and preferences by domino damselfish Dascyllus albisella Gill. J. exp. Mar. Biol. Ecol. 155: 85–104.

    Google Scholar 

  • Breitburg, D. 1989. Demersal schooling prior to settlement by larvae of the naked goby. Env. Biol. Fish. 26: 97–103.

    Google Scholar 

  • Bromage, N.R., P. Hardiman, J. Jones, J. Springate and V Bye. 1990. Fecundity, egg size and total egg volume differences in 12 stocks of rainbow trout, Oncorhynchus mykiss. Aquaculture and Fisheries Management 21: 269–284.

    Google Scholar 

  • Brooks, S., C.R. Tyler and J.P. Sumpter. 1997. Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries 7: 387–416.

    Google Scholar 

  • Bruce, B.D., M.A. Green and P.R. Last. 1998. Threatened fishes of the world: Brachionichthys hirsutus (Lacépède, 1804 ) (Brachionichthyidae). Env. Biol. Fish. 52: 418.

    Google Scholar 

  • Bruton, M.N. (ed.) 1989. Alternative life-history styles of animals. Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht. 617 pp.

    Google Scholar 

  • Bruton, M.N. (ed.) 1990. Alternative life-history styles of fishes. Developments in Environmental Biology of Fishes 10, Kluwer Academic Publishers, Dordrecht. 327 pp.

    Google Scholar 

  • Capra, F. 1975. The Tao of physics. An exploration of the parallels between modern physics and Eastern mysticism. Shambhala, Boulder. 330 pp.

    Google Scholar 

  • Clark, C.W. 1977. Overcapitalization in commercial fisheries: symptoms, causes, and cures. Env. Biol. Fish. 2: 3–5.

    Google Scholar 

  • Compagno, L.J.V. 1990. Alternative life-history styles of cartilaginous fishes in time and space. Env. Biol. Fish. 28: 33–75.

    Google Scholar 

  • Constantz, G.D. 1979. Life history patterns of a livebearing fish in contrasting environments. Oecologia (Berlin) 40: 189–201.

    Google Scholar 

  • Copp, G.H. and V. Kovd6. 1996. When do fish with indirect development become juveniles? Can. J. Fish. Aquat. Sci. 53: 746–752.

    Google Scholar 

  • Coulter, G.W. (ed.) 1991. Lake Tanganyika and its life. Nat. Hist. Museum Publ. and OUP, Oxford. 354 pp.

    Google Scholar 

  • Crawford, S.S. and E.K. Balon. 1994a. Alternative life histories of the genus Lucania: 1. Early ontogeny of L. parva, the rainwater killifish. Env. Biol. Fish. 40: 349–389.

    Google Scholar 

  • Crawford, S.S. and E.K. Balon. 1994b. Alternative life histories of the genus Lucania: 2. Early ontogeny of L. goodei, the bluefin killifish. Env. Biol. Fish. 41: 331–368.

    Google Scholar 

  • Crawford, S.S. and E.K. Balon. 1994e. Alternative life histories of the genus Lucania: 3. An ecomorphological explanation of altricial (L. parva) and precocial (L. goodei) species. Env. Biol. Fish. 41: 369–402.

    Google Scholar 

  • Crawford, S.S. and E.K. Balon. 1996. Cause and effect of parental care in fishes. An epigenetic perspective. pp. 53–107. In: J.S. Rosenblatt and C.T. Snowdon (ed.) Parental Care: Evolution, Mechanisms, and Adaptive Significance, Advances in the Study of Behavior 25, Academic Press, San Diego.

    Google Scholar 

  • Crawford, S.S., E.K. Balon and K.S. McCann. 1999. A mathematical technique for estimating blastodisc:yolk volume ratios instead of egg sizes. Env. Biol. Fish. 54: 227–232.

    Google Scholar 

  • Cunningham, J.E.R. and E.K. Balon. 1985. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 1. The development of embryos in hiding. Env. Biol. Fish. 14: 115–166.

    Google Scholar 

  • Cunningham, J.E.R. and E.K. Balon. 1986a. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 2. Implications of embryonic resting interval for larval development. Env. Biol. Fish. 15: 15–45.

    Google Scholar 

  • Cunningham, J.E.R. and E.K. Balon. 1986b. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 3. Comparison and evolutionary significance of some patterns in epigenesis of egg-scattering, hiding and bearing cyprinodontiforms. Env. Biol. Fish. 15: 91–105.

    Google Scholar 

  • Danilowicz, B.S. 1997. The effects of age and size on habitat selection during settlement of a damselfish. Env. Biol. Fish. 50: 257–265.

    Google Scholar 

  • DeMartini, E.E. 1991. Annual variations in fecundity, egg size, and the gonadal and somatic conditions of queenfish Seriphus politus (Sciaenidae). U.S. Fish. Bull. 89: 9–18.

    Google Scholar 

  • Depêche J. and R. Billard. 1994. Embryology in fish, a review. Société Française d’Ichtyologie, Paris. 123 pp.

    Google Scholar 

  • Devillers, C. 1961. Structural and dynamic aspects of the development of the teleostean egg. pp. 379–428. In: M. Abercrombrie and J. Brachet (ed.) Adavances in Morphogenesis, Academic Press, New York.

    Google Scholar 

  • Duellman, W.E. 1989. Alternative life-history styles in anuran amphibians: evolutionary and ecological implications. pp. 101–126. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Eigen, M. and P. Schuster. 1979. The hypercycle. A principle of natural self-organization. Springer-Verlag, Berlin. 92 pp.

    Google Scholar 

  • Felsenstein, J. 1979. r-and K-selection in a completely chaotic population model. Amer. Natur. 113: 499–510.

    Google Scholar 

  • Flegler-Balon, C. 1989. Direct and indirect development in fishes-examples of alternative life-history styles. pp. 71–100. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Fostner, H., S. Hinterleitner, K. Mahr and W. Wieser. 1983. Towards a better definition of `metamorphosis’ in Coregonus sp.: biochemical, histological, and physiological data. Can. J. Fish. Aquat. Sci. 40: 1224–1232.

    Google Scholar 

  • Fryer, G. 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa, with special reference to the fishes, and discussion of the evolution of a group of rock frequenting Cichlidae. Proc. Zool. Soc. Lond. 132: 153–281.

    Google Scholar 

  • Fryer, G. 1996. Endemism, speciation and adaptive radiation in great lakes. Env. Biol. Fish. 45: 109–131.

    Google Scholar 

  • Fryer, G. and T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa: their biology and evolution. Oliver and Boyd, Edinburgh. 641 pp.

    Google Scholar 

  • Fuiman, L.A. and D.M. Higgs. 1997. Ontogeny, growth and the recruitment process. pp. 225–249. In: R.C. Chambers and E.A. Trippel (ed.) Early Life History and Recruitment in Fish Populations, Chapman and Hall, London.

    Google Scholar 

  • Fuiman, L.A., K.R. Poling and D.M. Higgs. 1998. Quantifying developmental progress for comparative studies of larval fishes. Copeia 1998: 602–611.

    Google Scholar 

  • Garstang, W. 1962. Larval forms with other zoological verses. Basil Blackwell, Oxford. 77 pp.

    Google Scholar 

  • Geist, V. 1971. Mountain sheep. A study in behavior and evolution. University of Chicago Press, Chicago. 383 pp.

    Google Scholar 

  • Gottlieb, G. 1992. Individual development and evolution. Oxford University Press, New York. 231 pp.

    Google Scholar 

  • Greenwood, P.H. 1974. The cichlid fishes of Lake Victoria, East Africa: the biology and evolution of a species flock. Bull. Br. Mus. nat. Hist. ( Zool.) Suppl. 6: 1–134.

    Google Scholar 

  • Greenwood, P.H. 1989. Ontogeny and evolution: saltatory or otherwise? pp. 245–259. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hardy, A. 1962. Introduction. pp. 1–21. In: W. Garstang, Larval Forms with Other Zoological Verses, Basil Blackwell, Oxford.

    Google Scholar 

  • Harmelin-Vivien, M.L. 1989. Implications of feeding specialization on the recruitment processes and community structure of butterflyfishes. Env. Biol. Fish. 25: 101–110.

    Google Scholar 

  • Hempel, G. 1979. Early life history of marine fish: the egg stage. University Press, Seattle. 70 pp.

    Google Scholar 

  • Hinckley, S. 1990. Variation of egg size of walleye pollack Theragra chalcogramma with a preliminary examination of the effect of egg size on larval size. U.S. Fish. Bull. 88: 471–483.

    Google Scholar 

  • Houde, E.D. 1994. Differences between marine and freshwater fish larvae: implications for recruitment. ICES J. Mar. Sci. 51: 91–97.

    Google Scholar 

  • Iguchi, K. and N. Mizuno. 1991. Mechanisms of embryonic drift in the amphidromous goby, Rhinogobius brunneus. Env. Biol. Fish. 31: 295–300.

    Google Scholar 

  • Jägersten, G. 1972. Evolution of the metazoan life cycle. Academic Press, London. 276 pp.

    Google Scholar 

  • Jantsch, E. 1980. The self-organizing universe. Scientific and human implications of the emerging paradigm of evolution. Pergamon Press, Oxford. 343 pp.

    Google Scholar 

  • Kamler, E. 1992. Early life history of fish. An energetics approach. Chapman and Hall, London. 267 pp.

    Google Scholar 

  • Kasyanov, V.L., G.A. Kryuchkova, V.A. Kulikova and L.A. Medvedeva. 1998. Larvae of marine bivalves and echinoderms. Science Publishers, Enfield. 288 pp.

    Google Scholar 

  • Kaufman, L., J. Ebersole, J. Beets and C.C. Mclvor. 1992. A key phase in the recruitment dynamics of coral reef fishes: post-settlement transition. Env. Biol. Fish. 34: 109–118.

    Google Scholar 

  • Kj0rsvik, E., A. Mangor-Jensen and I. Holmefjord. 1990. Egg quality in fishes. Adv. Mar. Biol. 26: 71–113.

    Google Scholar 

  • Koller, G. 1930. Versuche an marinen Wirbellosen über die Aufnahme gelöster Nahrstoffe. Zeitschr. vergl. Physiol. 11: 437–447.

    Google Scholar 

  • Kottelat, M. 1997. European freshwater fishes. An heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia (Bratislava) 52 (supplement 5): 1–271.

    Google Scholar 

  • Kovâc, V. and G.H. Copp. 1999. Prelude: looking at early development in fishes. Env. Biol. Fish. 56: 7–14.

    Google Scholar 

  • Kratt, L.F. and R.J.F. Smith. 1977. A post-hatching sub-gravel stage in the life history of the Arctic grayling, Thymallus arcticus Pallas. Trans. Amer. Fish. Soc. 106: 241–243.

    Google Scholar 

  • Kryzhanovsky, S.G., N.N. Disler and E.N. Smirnova. 1953. Eco-morphological principles of development in percids. Trudy Inst. Morph. Zhiv. Severtsova 10: 3–138.

    Google Scholar 

  • Laale, H.W. 1980. The perivitelline space and egg envelopes of bony fishes: a review. Copeia 1980: 210–226.

    Google Scholar 

  • Landa, J.T. 1998. Bioeconomics of schooling fish: selfish fish, quasi-free riders, and other fishy tales. Env. Biol. Fish. 53: 353–364.

    Google Scholar 

  • Leis, J.M. 1993 Minimum requirements for published descriptions of larval fish development. Japan. J. Ichthyol. 40: 393–394.

    Google Scholar 

  • Leis, J.M. and D.S. Rennis. 1983. The larvae of Indo-Pacific coral reef fishes. New South Wales University Press, Kensington and University of Hawaii Press, Honolulu. 269 pp.

    Google Scholar 

  • Leis, J.M. and T. Trnski. 1989. The larvae of Indo-Pacific shorefishes. University of Hawaii Press, Honolulu. 371 pp.

    Google Scholar 

  • Livingston, J.A. 1994. Rogue primate. An exploration of human domestication. Key Porter Books, Toronto. 229 pp.

    Google Scholar 

  • Lobel, P.S. 1997. Comparative settlement age of damselfish larvae (Plectroglyphidon imparipennis, Pomacentridae) from Hawaii and Johnston Atoll. Biol. Bull. 193: 281–283.

    Google Scholar 

  • Lowe-McConnell, R.H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge. 382 pp.

    Google Scholar 

  • Lowe-McConnell, R.H. 1996. Fish communities in the African Great Lakes. Env. Biol. Fish. 45: 219–235.

    Google Scholar 

  • Luckinbill, L.S. 1979. Selection and the r/K continuum in experimental populations of protozoa. Amer. Natur. 113: 427–437.

    Google Scholar 

  • Mabee, P.M., D.S. Cua, S.B. Barlow and J.V. Helvik. 1998. Morphology of the hatching glands in Betta splendens ( Teleostei: Perciformes). Copeia 1998: 1021–1026.

    Google Scholar 

  • Makeyeva, A.P. 1988. Review of `Early life histories of fishes: new developmental, ecological and evolutionary perspectives (ed. by E.K. Balon)’. Voprosy ichtiologii 28: 697–700.

    Google Scholar 

  • Makeyeva, A.P. 1992. Embryology of fishes. Izd. Moskovskogo Universiteta, Moscow. 216 pp. (in Russian).

    Google Scholar 

  • Makeyeva, A.P. and D.S. Pavlov. 1998. Freshwater ichthyoplankton of Russia (an atlas). Moscow University Press, Moscow. 215 pp. (in Russian).

    Google Scholar 

  • Marini, F.C. 1996. My notes and observations on raising and breeding the banggai cardinalfish. The Journal of MaquaCulture 4: 1–4.

    Google Scholar 

  • Marshall, N.B. 1953. Egg size in Arctic, Antarctic and deep-sea fishes. Evolution 7: 328–341.

    Google Scholar 

  • Maturana, H.R. and F.J. Varela. 1988. The tree of knowledge. The biological roots of human understanding. Shambhala, Boston. 263 pp.

    Google Scholar 

  • McElman, J.F. and E.K. Balon. 1979. Early ontogeny of walleye, Stizostedion vitreum, with steps of saltatory development. Env. Biol. Fish. 4: 309–348 (reprinted in Dev. Env. Biol. Fish. 5: 92–131, 1985).

    Google Scholar 

  • McElman, J.F. and E.K. Balon. 1980. Early ontogeny of white sucker, Catostomus commersoni, with steps of saltatory development. Env. Biol. Fish. 5: 191–224.

    Google Scholar 

  • Medawar, P.B. and J.S. Medawar. 1983. Aristotle to zoos. A philosophical dictionary of biology. Harvard University Press, Cambridge. 305 pp.

    Google Scholar 

  • Medvedev, Z.A. 1969. Rise and fall of T.D. Lysenko. Columbia University Press, New York. 284 pp.

    Google Scholar 

  • Moriyama, A., Y. Yanagisawa, N. Mizuno and K. Omori. 1998. Starvation of drifting goby larvae due to retention of free embryos in upstream reaches. Env. Biol. Fish. 52: 321–329.

    Google Scholar 

  • Moser, H.G. 1981. Morphological and functional aspects of marine fish larvae. pp. 89–131. In: R. Lasker (ed.) Marine Fish Larvae, Washington Sea Grant Program, Seattle.

    Google Scholar 

  • Moser, H.G. (ed.) 1984. Ontogeny and systematics of fishes. Amer. Soc. Ichthyol. Herpet. Special Publ. 1. 760 pp.

    Google Scholar 

  • Moyle, P.B. and J.J. Cech, Jr. 1996. Fishes. An introduction to ichthyology, 3rd. ed. Prentice Hall, Upper Saddle River. 590 pp.

    Google Scholar 

  • Nice, M.M. 1962. Development of behavior in precocial birds. Trans. Linn. Soc. New York, volume 8. 211 pp.

    Google Scholar 

  • Okiyama, M. (ed.) 1988. An atlas of the early stage fishes in Japan. Tokai University Press, Tokyo. 1157 pp. (in Japanese).

    Google Scholar 

  • Paine, M.D. and E.K. Balon. 1984. Early development of the rainbow darter, Etheostoma caeruleum, according to the theory of saltatory ontogeny. Env. Biol. Fish. 11: 277–299.

    Google Scholar 

  • Paine, M.D. and E.K. Balon. 1986. Early development of johny darter, Etheostoma nigrum, and fantail darter, E. flabellare, with a discussion of its ecological and evolutionary aspects. Env. Biol. Fish. 15: 191–220.

    Google Scholar 

  • Pavlov, D.A. 1999. Features of transition from larva to juvenile in fishes with different types of early ontogeny. Env. Biol. Fish. 56: 41–52.

    Google Scholar 

  • Penâz, M. 1975. Early development of the grayling Thymallus thymallus (Linnaeus, 1758). Acta Sc. Nat. Brno 9 (11): 1–35.

    Google Scholar 

  • Penâz, M. 1981. Ecomorphological principles and saltation in the early ontogeny of salmonid fishes. pp. 95–100. In: M. Penâz and M. Prokes (ed.) Topical Problems in Ichthyology, Czech. Acad. Sci., Brno.

    Google Scholar 

  • Penâz, M. 1983. Ecomorphological laws and saltation in the early ontogeny of Salmonoidei. Folia Zool. ( Brno ) 32: 365–373.

    Google Scholar 

  • Pepin, P. 1991. The effect of temperature and size on development, mortality and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48: 503–518.

    Google Scholar 

  • Pepin, P. and R.A.Myers. 1991. Significance of egg and larval size to recruitment variability of temperate marine fish. Can. J. Fish. Aquat. Sci. 48: 1820–1828.

    Google Scholar 

  • Pfeiler, E. 1986. Towards an explanation of the developmental strategy in leptocephalous larvae of marine teleost fishes. Env. Biol. Fish. 15: 3–13.

    Google Scholar 

  • Pianka, E.R. 1978. Evolutionary ecology. Harper and Row, New York. 397 pp.

    Google Scholar 

  • Picard, F. and R. Voßwinkel. 1996. Normal developmental stages and levels of organogenesis of the rainbow trout Oncorhynchus mykiss (Walbaum, 1792 ). Z. Fischk. ( Solingen ) 3: 127–204.

    Google Scholar 

  • Policansky, D. 1981. Egg size and the timing of reproductive effort in fishes. Amer. Zool. 21: 987.

    Google Scholar 

  • Poll, M. 1986. Classification des Cichlidae du lac Tanganika, tribus, genres et espèces. Acad. Roy. Belg. Mem. Cl. Sci. Coll. 8’, 2e series 45, Fasc. 2: 1–163.

    Google Scholar 

  • Prigogine, I. 1980. From being to becoming. Time and complexity in the physical sciences. W.H. Freeman, San Francisco. 272 pp.

    Google Scholar 

  • Rass, T.S. 1946. Stages of ontogeny in teleost fishes. Zool. Zhurnal 25: 137–148.

    Google Scholar 

  • Rass, T.S. 1948. On the life periods and regularities of development and growth of fishes. Izvestiya Akad. Nauk SSSR, Ser. Biologiya 3: 295–305.

    Google Scholar 

  • Rass, T.S. 1953. Importance of eggs and larval structure for fish systematics. pp. 181–198. In: E.N. Pavlovsky (ed.) Otcherki po Obshchim Voprosam Ikhtiologii, Akad. Nauk SSSR Press, Moscow (in Russian).

    Google Scholar 

  • Ribbink, A.J., B.A. Marsh, A.C. Marsh, A.C. Ribbink and B.J. Sharp. 1983. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. S. Afr. J. Zool. 18: 147–310.

    Google Scholar 

  • Risk, A. 1998. The effects of interactions with reef residents on the settlement and subsequent persistence of ocean surgeonfish, Acanthurus bahianus. Env. Biol. Fish. 51: 377–389.

    Google Scholar 

  • Roule, L. 1924. L’ontogénèse et la croissance avec hyper-métamorphose de Luvarus imperialis Raf. Ann. Inst. Océan., Paris (n.s.) 1: 121–157.

    Google Scholar 

  • Sale, P.F. (ed.) 1991. The ecology of fishes on coral reefs. Academic Press, San Diego. 754 pp.

    Google Scholar 

  • Seehausen, O. 1996. Lake Victoria rock cichlids. Verduyn Cichlids, Zevenhuizen. 304 pp.

    Google Scholar 

  • Sermonti, G. 1997. Resonant messages. Rivista di Biologia/ Biology Forum 90: 187–189.

    Google Scholar 

  • Snyder, D.E. 1976. Terminologies for intervals of larval fish development. pp. 41–58. In: J. Boreman (ed.) Great Lakes Fish Egg and Larvae Identification: Proceedings of a Workshop, National Power Plant Team, Power Plant Project FWS/OBS 76/23, Ann Arbor.

    Google Scholar 

  • Stearns, S.C. 1980. A new view of life-history evolution. Oikos 35: 266–281.

    Google Scholar 

  • Stearns, S.C. 1992. The evolution of life histories. Oxford University Press, Oxford. 249 pp.

    Google Scholar 

  • Stobutzki, I.C. and D.R. Bellwood. 1997. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149: 35–41.

    Google Scholar 

  • Stephens, G.C. 1982. Recent progress in the study of `Die Ernährung der Wassertiere and der Stoffhaushalt der Gewässer’. Amer. Zool. 22: 611–619.

    Google Scholar 

  • Subiyanto, I. Hirata and T. Senta. 1993. Larval settlement of the Japanese flounder on sandy beaches of the Yatsushito Sea, Japan. Nippon Suisan Gakkaishi 59: 1121–1128.

    Google Scholar 

  • Sweatman, H.P.A. 1988. Field evidence that settling coral reef fish larvae detect resident fishes using dissolved chemical cues. J. Exp. Mar. Biol. Ecol. 124: 163–174.

    Google Scholar 

  • Tesch, F.-W. 1977. The eel. Biology and management of anguillid eels. Chapman and Hall, London. 434 pp.

    Google Scholar 

  • Tilney, R.L. and T. Hecht. 1993. Early ontogeny of Galeichthys feliceps Valenciennes from the south east coast of South Africa. J. Fish Biol. 43: 183–212.

    Google Scholar 

  • Thresher, R.E. 1984. Reproduction in reef fishes. T.F.H. Publications, Neptune City. 399 pp.

    Google Scholar 

  • Thresher, R.E. 1985. Distribution, abundance, and reproductive success in the coral reef fish Acanthochromis polyacanthus. Ecology 66: 1139–1150.

    Google Scholar 

  • Thresher, R.E. 1988. Latitudinal variation in egg sizes of tropical and sub-tropical North Atlantic shore fishes. Env. Biol. Fish. 21: 17–25.

    Google Scholar 

  • Trinkaus, J.P. 1984. Cells into organs. The forces that shape the embryo. Prentice-Hall, Englewood Cliffs. 543 pp.

    Google Scholar 

  • Vagelli, A. 1999. The reproductive biology and early ontogeny of the mouthbrooding Banggai cardinalfish, Pterapogon kau-dermi ( Perciformes, Apogonidae). Env. Biol. Fish. 56: 79–92.

    Google Scholar 

  • Vasnetsov, V.V. 1948. `Etaps’ of development in organ systems connected with feeding in roach, bream and carp. pp. 233–253. In: V.V. Vasnetsov (ed.) Morphological Features Determining Feeding of Roach, Bream and Carp at All Stages of Development, Akad. Nauk Press, Moscow-Leningrad (in Russian). Vasnetsov, V.V. 1953. Etaps in the development of bony fishes. pp. 207–217. In: E.N. Pavlovsky (ed.) Otcherky po Obshtch. Vopr. Ikhtiol., AN SSSR Press, Moscow-Leningrad (in Russian).

    Google Scholar 

  • Victor, B.C. 1986a. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90: 317–326.

    Google Scholar 

  • Victor, B.C. 1986b. Delayed metamorphosis with reduced larval growth in a coral reef fish (Thalassoma bifasciatum). Can. J. Fish. Aquat. Sci. 43: 1208–1213.

    Google Scholar 

  • Vilizzi, L. and K.F. Walker. 1999. The onset of the juvenile period in carp, Cyprinus carpio: a literature survey. Env. Biol. Fish. 56: 93–102.

    Google Scholar 

  • Wald, G. 1981. Metamorphosis: an overview. pp. 1–39. In: L.I. Gilbert and E. Frieden (ed.) Metamorphosis, A Problem in Developmental Biology, Plenum Press, New York.

    Google Scholar 

  • Ware, D.M. 1975. Relation between egg size, growth and natural mortality of larval fish. J. Fish. Res. Board Can. 32: 2503–2512.

    Google Scholar 

  • Wassersug, R.J. 1975. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Amer. Zool. 15: 405–417.

    Google Scholar 

  • Wassersug, R.J. and W.E. Duellman. 1984. Oral structures and their development in egg-brooding hylid frog embryos and larvae: evolutionary and ecological implications. J. Morphol. 182: 1–37.

    Google Scholar 

  • Webb, J.F. 1999. Larvae in fish development and evolution. pp. 109–158. In: B.K. Hall and M.H. Wake (ed.) The Origin and Evolution of Larval Forms, Academic Press, San Diego.

    Google Scholar 

  • Williamson, D.I. 1992. Larvae and evolution. Toward a new zoology. Chapman and Hall, London. 223 pp.

    Google Scholar 

  • Williamson, G.R., C.L. Deedler and F. de Graaf. 1993. One-day metamorphosis of Anguilla anguilla leptocephali into glass eels. Japan. J. Ichthyol. 40: 282–283.

    Google Scholar 

  • Witte, E 1984. Ecological differentiation in Lake Victoria haplochromines: comparison of cichlid species flocks in African lakes. pp. 157–167. In: A.A. Echelle and I. Kornfield (ed.) Evolution of Fish Species Flocks, University of Maine Press, Orono.

    Google Scholar 

  • Wourms, J.P. 1981. Viviparity: the maternal-fetal relationship in fishes. Amer. Zool. 21: 473–515.

    Google Scholar 

  • Wourms, J.P., B.D. Grove and J. Lombardi. 1988. The maternal-embryonic relationship in viviparous fishes. pp. 1–134. In: W.S. Hoar and D.J. Randall (ed.) Fish Physiology, vol. 11b, Academic Press, San Diego.

    Google Scholar 

  • Yanagisawa, Y. and H. Ochi. 1991. Food intake by mouthbrooding females of Cyphotilapia frontosa (Cichlidae) to feed both themselves and their young. Env. Biol. Fish. 30: 353–358.

    Google Scholar 

  • Yanagisawa, Y. and T. Sato. 1990. Active browsing by mouthbrooding females of Tropheus duboisi and Tropheus moorii (Cichlidae) to feed the young and/or themselves. Env. Biol. Fish. 27: 43–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gordon H. Copp Vladimír Kováč Karol Hensel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balon, E.K. (1998). Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). In: Copp, G.H., Kováč, V., Hensel, K. (eds) When do fishes become juveniles?. Developments in environmental biology of fishes, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3678-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3678-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5305-3

  • Online ISBN: 978-94-017-3678-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics