Skip to main content

Biopharmaceutical Drug Development: A Case History

Filgrastim (NEUPOGEN, GRAN)

  • Chapter
Biopharmaceuticals, an Industrial Perspective

Abstract

In the 1980s, human and murine forms of many hematopoietic colony stimulating factors were cloned. One factor that was purified, cloned, and produced in commercial quantities was granulocyte colony-stimulating factor (G-CSF, Filgrastim), a protein that acts on the neutrophil lineage. Neutrophils are the body’s major defence against infections. The initial licensing indication for Filgrastim was the amelioration of chemotherapy-induced neutropenia. It has been approved in more than 75 countries for a variety of uses, including aplastic anaemia, severe chronic neutropenia, and the mobilisation of peripheral blood progenitor cells for transplantation. Filgrastim has an excellent safety profile with the only common side effect of administration reported being mild to moderate bone pain. Current issues being investigated include evaluation of the cost benefit of Filgrastim in various clinical settings and impact on survival in dose-intensive chemotherapy with Filgrastim given as an adjunct treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cebon J. et al. (1994). Endogenous haemopoetic growth factors in neutropenia and infection. Br J Haematol. 86, 265–274.

    Article  CAS  Google Scholar 

  2. Morstyn G. et al. (1991). Cytokines in infections and as anticancer agents. Ann Haematol. 29A, 96a.

    Google Scholar 

  3. Watari K. et al. (1989). Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood. 73, 117–122.

    CAS  Google Scholar 

  4. Kawakami M. et al. (1990). Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood. 76, 1962–1964.

    CAS  Google Scholar 

  5. Metcalf D. (1988). The Molecular Control of Blood Cells. Harvard University Press. Cambridge, MS.

    Google Scholar 

  6. Hartung T. et al. (1995). Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood. 85, 2482–2489.

    CAS  Google Scholar 

  7. Lieschke GJ. et al. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 84, 1737–1746.

    CAS  Google Scholar 

  8. Moore MA. et al. (1987). Biological activities of recombinant granulocyte colony stimulating factor (rhG-CSF) and tumor necrosis factor: in vivo and in vitro analysis. Hamatol Bluttransfus. 31, 210–220.

    CAS  Google Scholar 

  9. Tamura M. et al. (1987). Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun. 142, 454–460.

    Article  CAS  Google Scholar 

  10. Welte K. et al. (1985). Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA. 82, 1526–1530.

    Article  CAS  Google Scholar 

  11. Stevens P. et al. (1991). Pharmacodynamics of recombinant human G-CSF with respect to an increase of neutrophil oxidative metabolism. J Leucocyte Biol. 2, 40.

    Google Scholar 

  12. Hartung T. et al. (1998). Filgrastim (r-metHuG-CSF) restores IL-2 production of blood from advanced HIV patients.. J Infect Dis. (in press).

    Google Scholar 

  13. Lord BI. et al. (1989). The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci USA. 86, 9499–9503.

    Article  CAS  Google Scholar 

  14. Bronchud MH. et al. (1988). In vitro and in vivo analysis of the effects of recombinant human granulocyte colony-stimulating factor in patients. Br J Cancer. 58, 64–69.

    Article  CAS  Google Scholar 

  15. Colgan SP. et al. (1992). Neutrophil fimction in normal and Chediak-Higashi syndrome cats following administration of recombinant canine granulocyte colony-stimulating factor. Exp Hem. 20, 1229–1234.

    CAS  Google Scholar 

  16. Pitrak DL. et al. (1996). Filgrastim (r-methuG-CSF) treatment of HIV-infected patients improves neutrophil function. Int Conf AIDS. 282, Abstract ThB4181.

    Google Scholar 

  17. Roilides E. et al. (1991). Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis. 163, 579–583.

    Article  CAS  Google Scholar 

  18. Gorgen I. et al. (1992). Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-alpha. J Immunol. 149, 918–924.

    CAS  Google Scholar 

  19. Souza LM. et al. (1986). Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 232, 61–65.

    Article  CAS  Google Scholar 

  20. Ulich TR. et al. (1988). Kinetics and mechanisms of recombinant human granulocyte-colony stimulating factor-induced neutrophilia. Am J Pathol. 133, 630–638.

    CAS  Google Scholar 

  21. Broxmeyer HE. et al. (1988). Recombinant human granulocyte-colony stimulating factor and recombinant human macrophage-colony stimulating factor synergize in vivo to enhance proliferation of granulocyte-macrophage, erythroid, and multipotential progenitor cells in mice. J Cell Biochem. 38, 127–136.

    Article  CAS  Google Scholar 

  22. Cohen AM. et al. (1987). In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Natl Acad Sci USA. 84, 2484–2488.

    Article  CAS  Google Scholar 

  23. Lothrop CJ. et al. (1988). Correction of canine cyclic hematopoiesis with recombinant human granulocyte colony-stimulating factor. Blood. 72, 1324–1328.

    CAS  Google Scholar 

  24. Welte K. et al. (1988). Recombinant human granulocyte-colony stimulating factor: in vivo effects on myelopoiesis in primates. Behring Inst Mitt. 83, 102–106.

    CAS  Google Scholar 

  25. Gillio AP. et al. (1987). Effects of recombinant human granulocyte-colony stimulating factor on hematopoietic reconstitution after autologous bone marrow transplantation in primates. Transpl Proc. 19, 153–156.

    CAS  Google Scholar 

  26. Fink MP. et al. (1993). Effect of granulocyte colony-stimulating factor on systemic and pulmonary responses to endotoxin in pigs. J Trauma. 34, 571–577.

    Article  CAS  Google Scholar 

  27. Kanazawa M. et al. (1992). Granulocyte colony-stimulating factor does not enhance endotoxin-induced acute lung injury in guinea pigs. Am Rev Respir Dis. 145, 1030–1035.

    Article  CAS  Google Scholar 

  28. Smith WS. et al. (1995). Granulocyte colony-stimulating factor versus placebo in addition to penicillin G in a randomized blinded study of gram-negative pneumonia sepsis: analysis of survival and multisystem organ failure. Blood. 86, 1301–1309.

    CAS  Google Scholar 

  29. Gratwohl A. et al. (1995). Transplantation of G-CSF mobilized allogeneic peripheral blood stem cells in rabbits. Bone Marrow Transplant. 16, 63–68.

    CAS  Google Scholar 

  30. Tanaka H. et al. (1991). Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res. 51, 3710–3714.

    CAS  Google Scholar 

  31. Welte K. et al. (1987). Recombinant human granulocyte colony-stimulating factor: effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med. 165, 941–948.

    Article  CAS  Google Scholar 

  32. Avalos BR. et al. (1994). Abnormal response to granulocyte colony-stimulating factor (G-CSF) in canine cyclic hematopoiesis is not caused by altered G-CSF receptor expression. Blood. 84, 789–794.

    CAS  Google Scholar 

  33. Hollingshead LM, Goa KL. (1991). Recombinant granulocyte colony-stimulating factor (rG-CSF). A review of its pharmacological properties and prospective role in neutropenic conditions. Drug Evaluation. 42, 300–330.

    CAS  Google Scholar 

  34. Lieschke GJ, Burgess AW. (1992). Granulocyte colony-simulating factor and granulocyte-macrophage colony-stimulating factor (2). N Eng J Med. 327: 28–35.

    Article  CAS  Google Scholar 

  35. Steward WP. (1993). Granulocyte and granulocyte-macrophage colony-stimulating factor. Lancet. 342, 153–157.

    Article  CAS  Google Scholar 

  36. Frampton JE. et al. (1994). Filgrastim. A review of its pharmacological properties and therapeutic efficacy in neutropenia. Drug Evaluation. 48, 731–760.

    CAS  Google Scholar 

  37. Welte K. et al. (1996). Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 88, 1907–1929.

    CAS  Google Scholar 

  38. Foote MA. et al. Granulocyte colony-stimulating factor. IN: Cytokines, edited by AR MireSluis, R Thorpe; Academic Press, London; pages 231–244, 536.

    Google Scholar 

  39. Gabrilove JL. et al. (1988). Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional cell carcinoma of the urothelium. N Engl J Med. 111, 887–892.

    Google Scholar 

  40. Gabrilove JL. et al. (1988). Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J Clin Invest. 82, 1454–1461.

    Article  Google Scholar 

  41. Morstyn G. et al. (1988). Effect of granulocyte colony-stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet. 1, 667–672.

    Article  CAS  Google Scholar 

  42. Bronchud MH. et al. (1987) Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer. 56, 809–813.

    Article  CAS  Google Scholar 

  43. Crawford J. et al. (1991). Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small cell lung cancer. N Engl J Med. 325, 164–170.

    Article  CAS  Google Scholar 

  44. Trillet-Lenoir V. et al. (1993). Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer. 29A, 319–324.

    Article  Google Scholar 

  45. Bronchud MH. et al. (1989). Phase 1/II study of recombinant human granulocyte colony-stimulating factor to increase the intensity of treatment with doxorubicin in patients with advanced breast and ovarian cancer. Br J Cancer. 60, 121–128.

    Article  CAS  Google Scholar 

  46. Demetri GD. et al. (1991). Recombinant methionyl granulocyte-CSF (r-metHuG-CSF) allows an increase in the dose intensity of cyclophosphamide/doxorubicin/5-fluorouracil (CAF) in patients with advanced breast cancer. Proc ASCO. 10, 70a.

    Google Scholar 

  47. Pettengell R. et al. (1992). Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin’s lymphoma: a randomized controlled trial. Blood. 80, 1430–1436.

    CAS  Google Scholar 

  48. Sheridan WP. et al. (1989). Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet. 2, 891–895.

    Article  CAS  Google Scholar 

  49. Peters WP. et al. (1989). Comparative effects of rHuG-CSF and rHuGM-CSF on hematopoietic reconstitution and granulocyte function following high dose chemotherapy and autologous bone marrow transplantation (ABMT). Proc ASCO. 18, 18A.

    Google Scholar 

  50. Taylor KM. et al. (1989). Recombinant human granulocyte colony-stimulating factor hastens granulocyte recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin’s disease. J Clin Oncol. 7, 1791–1799.

    CAS  Google Scholar 

  51. Negrin RS. et al. (1990). Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor. Blood. 7, 36–43.

    Google Scholar 

  52. Greenberg P. et al. (1993). Phase III randomized multicenter trial of G-CSF vs observation for myelodysplastic syndromes (MDS). Blood. 82, 196a.

    Google Scholar 

  53. Dale DC. et al. (1993). A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (Filgrastim) for treatment of severe chronic neutropenia. Blood. 81, 2496–2502.

    CAS  Google Scholar 

  54. Dale DC. et al. (1990). Long term treatment of severe chronic neutropenia with recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF). Blood. 76, 545a.

    Google Scholar 

  55. Welte K. et al. (1990). Differential effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in children with severe congenital neutropenia. Blood. 75, 1056–1063.

    CAS  Google Scholar 

  56. Jacobsen MA. et al. (1992). Ganciclovir with recombinant methionyl human granulocyte colony-stimulating factor for treatment of cytomegalovirus disease in AIDS patients. AIDS. 6, 515–517.

    Article  Google Scholar 

  57. Miles SA. et al. (1991). Combined therapy with recombinant granulocyte colony-stimulating factor and erythropoietin decreases hematologic toxicity from zidovudine. Blood. 77, 2109–2117.

    CAS  Google Scholar 

  58. Hermans P. et al. (1996). Filgrastim to treat neutropenia and support myelosuppressive medication dosing in 111V infection. G-CSF 92105 Study Group. AIDS. 10, 1627–1633.

    Article  CAS  Google Scholar 

  59. Kuritzkes DR. et al. (1998). Filgrastim prevents severe neutropenia and reduces infective morbidity in patients with advanced HIV infection: results of a randomized, multicenter, controlled trial. AIDS. 12, 65–74.

    Article  CAS  Google Scholar 

  60. Chao NJ. et al. (1993). Granulocyte colony-stimulating factor “mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood. 81, 2031–2035.

    CAS  Google Scholar 

  61. Hohaus S. et al. (1993). Successful autografting following myeloablative conditioning therapy with blood stem cells mobilized by chemotherapy plus rhG-CSF. Exp Hematol. 21, 508–514.

    CAS  Google Scholar 

  62. Sheridan WP. et al. (1992). Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet. 339, 640–644.

    Article  CAS  Google Scholar 

  63. Sheridan WP. et al. (1990). Granulocyte colony-stimulating factor (G-CSF) in peripheral blood stem cell (PBSC) and bone marrow transplantation. Blood. 76, Si.

    Google Scholar 

  64. Diirhsen U. et al. (1988). Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 72, 2074–2081.

    Google Scholar 

  65. Faucher C. et al. (1996). Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery. J Hematother. 5, 663–670.

    Article  CAS  Google Scholar 

  66. Schmitz N. et al. (1996). Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet. 347, 353–357.

    Article  CAS  Google Scholar 

  67. Heil G. et al. (1997). A randomized, double-blind, placebo-controlled, phase III study of Filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. Blood. 90, 4710–4718.

    CAS  Google Scholar 

  68. Lieschke GJ, Morstyn G. (1990). Role of G-CSF and GM-CSF in the prevention of chemotherapy-induced neutropenia. In: Hematopoietic Growth Factors in Clinical Applications, R Mertelsmann and F Herrmann, eds, pages 191–223.

    Google Scholar 

  69. Patterson KL. et al. (1998). Safety profile of r-metHuG-CSF (Filgrastim). In: Morstyn G, Dexter TM, Foote MA (eds). Filgrastim (r-metHuG-CSF) in Clinical Practice. Marcel Dekker, Inc. New York

    Google Scholar 

  70. Bastion Y. et al. (1994). Possible toxicity with the association of G-CSF and bleomycin. Lancet. 343, 1221–1222.

    Article  CAS  Google Scholar 

  71. Oldham RK. (1982) Biological Response Modifiers Programme and cancer chemotherapy. hit J Tissue React. 4, 173–188.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Foote, M.A., Boone, T. (1999). Biopharmaceutical Drug Development: A Case History. In: Walsh, G., Murphy, B. (eds) Biopharmaceuticals, an Industrial Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0926-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0926-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5237-7

  • Online ISBN: 978-94-017-0926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics