Skip to main content

Computational Strategies for Modeling Receptor Flexibility in Studies of Receptor-Ligand Interactions

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 352))

Abstract

All biomolecular binding processes involve molecular dynamics, even those apparently corresponding to the rigid lock-and-key model. However, while it is becoming increasingly common to treat the flexibility of small ligands explicitly in drug design studies, the flexibility of macromolecular receptors is often ignored. Here, the different types of receptor motions on ligand binding are described and their implications for drug design discussed. Methods to model and simulate receptor dynamics on ligand binding are outlined. Their current usage in the context of structure-based drug design is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BD:

Brownian: dynamics

CS:

conformational search

EM:

energy minimization

MM:

molecular mechanics

MC:

Monte Carlo

MD:

molecular dynamics

nmr:

nuclear magnetic resonance

pmf:

potential of mean force

QM:

quantum mechanics

rmsd:

root mean square deviation

SA:

simulated annealing

TI:

thermodynamic integration

TP:

thermodynamic perturbation.

References

  1. Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme, Ber. Deutsch Chem. Ges., 27, 2985–2993.

    Article  CAS  Google Scholar 

  2. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H. and Sigler, P.B. (1990) Interfacial Catalysis: The Mechanism of Phospholipase A2, Science, 250, 1541–1563.

    Article  CAS  Google Scholar 

  3. Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. (1991) Structures of Free and Inhibited Human Secretory Phospolipase A2 from Inflamatory Exudate, Science, 254, 1007–1010.

    Article  CAS  Google Scholar 

  4. van den Berg, B., Tessari, M., Boelens, R., Dijkman, R., de Haas, G.H., Kaptein, R. and Verheij, H. (1995) NMR structures of phospholipase A2 reveal conformational changes during interfacial activation, Nature Structure Biology, 2, 402–406.

    Article  Google Scholar 

  5. Burgen, A.S.V., Roberts, G.C.K. and Feeny, J. (1975) Binding of flexible ligands to macromolecules, Nature, 253, 753–755.

    Article  CAS  Google Scholar 

  6. Koshland, D.E. (1958) Applications of a Theory of Enzyme Specificity to Protein Synthesis, Proc. Natl. Acad. Sci., 44, 98–104.

    Article  CAS  Google Scholar 

  7. McCammon, J.A. and Northrup, S.H. (1981) Gated binding of ligands to proteins, Nature, 293, 316–317.

    Article  CAS  Google Scholar 

  8. Mattos, C. and Ringe, D. (1993) Multiple Binding Modes, in 3D QSAR in Drug Design, H. Kubinyi, Editor. ESCOM: Leiden. p. 226–254.

    Google Scholar 

  9. Morton, A. and Matthews, B.W. (1995) Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity, Biochemistry, 34, 8576–8588.

    Article  CAS  Google Scholar 

  10. Diana, G.D., McKinlay, M.A., Otto, M., Akullian, V. and Oglesby, C. (1985) [[(4,5-dihydro-2-oxazolyl)phenoxy]alkyl]isoxazoles. Inhibitors of picornavirus uncoating, J. Med. Chem., 28, 1906–1910.

    Article  CAS  Google Scholar 

  11. Kim, K.H., Willingmann, P., Gong, Z.X., Kremer, M.J., Chapman, M.S., Minor, I., Oliveira, M.A., et al. (1993) A comparison of the anti-rhinoviral drug pocket in HRV14 and HRV1A, J. Mol. Biol., 230, 206–227.

    Article  CAS  Google Scholar 

  12. Fritzche, H. (1994) Infrared linear dichroism studies of DNA-drug complexes: quantitative determination of the drug-induced restriction of the B-A transition, Nucl. Acids Res., 22, 787–791.

    Article  Google Scholar 

  13. Warshel, A. (1991) Computer Modelling of Chemical Reactions in Enzymes and Solutions. New York: J. Wiley.

    Google Scholar 

  14. Bala, P., Grochowski, P., Lesyng, B. and McCammon, J.A. (1996) Quantum-Classical Molecular Dynamics Simulations of Proton Transfer Processes in Molecular Complexes and in Enzymes, J. Phys. Chem., 100, 2535–2545.

    Article  CAS  Google Scholar 

  15. Luty, B.A., El Amrani, S. and McCammon, J.A. (1993) Simulation of the Bimolecular Reaction between Superoxide and Superoxide Dismutase: Synthesis of the Encounter and Reaction Steps, J. Am. Chem. Soc., 115, 11874–11877.

    Article  CAS  Google Scholar 

  16. McCammon J. A. and Harvey, S.C. (1987) Dynamics of Proteins and Nuclear Acids. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  17. Brooks, C.L., Karplus, M. and Pettitt, M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics. Advances in Chemical Physics, ed. I. Prigogne and S.A. Rice. Vol. 71. New York: Wiley.

    Google Scholar 

  18. Worth, G.A., Lecuyer, C. and Wade, R.C. (1996) TRAJAN: A Tool to Analyze Trajectories from Molecular Simulations, J. Mol. Graph., in press.

    Google Scholar 

  19. van Aalten, D.M.F., Findlay, J.B.C., Amadei, A. and Berendsen, H.J.C. (1995) Essential dynamics of the cellular retinol-binding protein — evidence for ligand-induced conformational changes, Protein Eng., 8, 1129–1135.

    Article  Google Scholar 

  20. Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C. (1989) New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure, J. Med. Chem., 32, 1083–1094.

    Article  CAS  Google Scholar 

  21. Rarey, M., Kramer, B. and Lengauer, T. (1995) Time-efficient docking of flexible ligands into active sites of proteins, ISMB, 3, 300–308.

    CAS  Google Scholar 

  22. Jones, G.W., P. and Glen, R. (1995) Molecular Recognition of Receptor Sites using a Genetic Algorithm with a Description of Desolvation, J. Mol. Biol., 245, 43–53.

    Article  CAS  Google Scholar 

  23. Mizutani, M.Y., Tomioka, N. and Itai, A. (1994) Rational automatic search method for stable docking models of protein and ligand., J. Mol. Biol., 243, 310–326.

    Article  CAS  Google Scholar 

  24. Caflisch, A., Niederer, P. and Anliker, M. (1992) Monte Carlo Docking of Oligopeptides to Proteins, Proteins:Structure, Function and Genetics, 13, 223–230.

    Article  CAS  Google Scholar 

  25. Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J. (1996) Distributed automated docking of flexible ligands to proteins: parallel application of AutoDock 2.4, J. Comp. Aided Mol. Des., in press.

    Google Scholar 

  26. Calfisch, A., Miranker, A. and Karplus, M. (1993) Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase, J. Med. Chem., 36, 2142–2164.

    Article  Google Scholar 

  27. Abagyan, R., Totrov, M. and Kuznetsov, D. (1994) ICM — A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation, J. Comp. Chem., 15, 488–506.

    Article  CAS  Google Scholar 

  28. Leach, A.R. (1994) Ligand docking to proteins with discrete Side-chain Flexibility, J. Mol. Biol., 345–356.

    Google Scholar 

  29. Wade, R.C. (1993) Molecular Interaction Fields, in 3D QSAR in Drug Design. Theory, Methods and Applications, H. Kubinyi, Editor. ESCOM, Leiden. p. 486–505.

    Google Scholar 

  30. Helms, V., Deprez, E., Gill, E., Barret, C., Hui Bon Hoa, G. and Wade, R.C. (1996) Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding ocket, Biochemistry, 35, 1485–1499.

    Article  CAS  Google Scholar 

  31. Di Nola, A., Roccatano, D. and Berendsen, H.J.C. (1994) Molecular Dynamics Simulation of the Docking of Substrates to Proteins, Proteins, 19, 174–182.

    Article  Google Scholar 

  32. Miranker, A. and Karplus, M. (1991) Functionality maps of binding sites: a multicopy simultaneous search method, Proteins, 1, 29–34.

    Article  Google Scholar 

  33. Elber, R. and Karplus, M. (1990) Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulations of carbon monoxide diffusion through myoglobin, J. Am. Chem. Soc., 112, 9161–9175.

    Article  CAS  Google Scholar 

  34. Rosenfeld, R., Zheng, Q., Vajda, S. and DeLisi, C. (1993) Computing the structure of bound peptides: application to antigen recognition by class I MHCs, J. Mol. Biol., 234, 515–521.

    Article  CAS  Google Scholar 

  35. Luty, B.A., Wasserman, Z.R., Stouten, P.F.W., Hodge, C.N., Zacharias, M. and McCammon, J.A. (1995) A molecular mechanics/grid method for evaluation of ligand-receptor interactions, J. Comp. Chem., 16, 454–464.

    Article  CAS  Google Scholar 

  36. Wasserman, Z.R. and Hodge, N.C. (1996) Fitting an Inhibitor into the active site of Thermolysin: A molecular dynamics case study, Proteins, 24, 227–237.

    Article  CAS  Google Scholar 

  37. Straatsma, T.P. and McCammon, J.A. (1992) Computational Alchemy, Annu. Rev. Phys. Chem., 41, 407–435.

    Article  Google Scholar 

  38. Wade, R.C. and McCammon, J.A. (1992) Binding of an Antiviral Agent to a sensitive and a resistant Human Rhinovirus. Computer Simulations Studies with Sampling of Amino Acid Side-chain Conformations. I Mapping the Rotamers of Residue 188 of Viral Protein 1, J. Mol.Biol., 679–696.

    Google Scholar 

  39. Wade, R.C. and McCammon, J.A. (1992) Binding of an Antiviral Agent to a sensitive and a resistant Human Rhinovirus. Computer Simulations Studies with Sampling of Amino Acid Side-chain Conformations. II. Calculations of Free-energy Differences by Thermodynamic Integration, J.Mol.Biol., 697–712.

    Google Scholar 

  40. Boehm, H.-J. (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comp. Aided Mol. Des., 8, 243–256.

    Article  CAS  Google Scholar 

  41. Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C. (1995) Prediction of Drug Binding Affinities by comparative Binding Energy Analysis, J. Med. Chem., 38, 2681–2691.

    Article  CAS  Google Scholar 

  42. Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacca, J.P., Dorsey, B.D., Levin, R.B., et al. (1995) A priori predictions of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38, 305–317.

    Article  CAS  Google Scholar 

  43. Grootenhuis, P.D.J. and van Galen, P.J.M. (1995) Correlation of Binding Affinities with Non-bonded Interaction Energies of Thrombin-Inhibitor Complexes, Acta Cryst. D., 51, 560–566.

    Article  CAS  Google Scholar 

  44. Northrup, S.H., Zarin, F. and McCammon, J.A. (1982) Rate Theory for Gated Diffusion-influenced Ligand Binding to Proteins, J. Phys. Chem, 86, 2314–2321.

    Article  CAS  Google Scholar 

  45. Roux, B. and Karplus, M. (1994) Molecular dynamics of the Gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. , 23, 731–761.

    Article  CAS  Google Scholar 

  46. Getzoff, E.D., Cabelli, D.E., Fisher, C.L., Parge, H.E., Viezzoli, M.S., Banci, L. and Hallewell, R.A. (1992) Faster Superoxide Dismutase Mutants Designed by Enhancing Electrostatic Guidance, Nature, 358, 347–351.

    Article  CAS  Google Scholar 

  47. Wade, R.C., Luty, B.A., Davis, M.E., Madura, J.D. and McCammon, J.A. (1993) Gating of the Active Site of Triose Phosphate Isomerase: Brownian Dynamics Simulations of Flexible Peptide Loops in the Enzyme, Biophys. J., 64, 9–15.

    Article  CAS  Google Scholar 

  48. Peters, G.H., Olsen, O.H., Svendsen, A. and Wade, R.C. (1996) Theoretical investigation of the dynamics of the Active Site Lid in Rhizomucor Miehei Lipase, Biophys. J., in press.

    Google Scholar 

  49. Wade, R.C., Luty, B.A., Demchuk, E., Madura, J.D., Davis, M.E., Briggs, J.M. and McCammon, J.A. (1994) Simulation of enzyme-substrate encounter with gated active sites, Nature Struct. Biol, 1, 65–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wade, R.C., Lüdemann, S. (1998). Computational Strategies for Modeling Receptor Flexibility in Studies of Receptor-Ligand Interactions. In: Codding, P.W. (eds) Structure-Based Drug Design. NATO ASI Series, vol 352. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9028-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9028-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5078-6

  • Online ISBN: 978-94-015-9028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics