Skip to main content

Growing different field crops under high salinity levels and utilization of genetically engineered Rhizobia and Azotobacter salt drought tolerant strains

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 28))

Abstract

The purpose of this work is to test different cultivars from fodder beet, oil rape seeds and barley if they can resist successfully severe conditions of high salinity with the production of economic yield. In spite of the high saline water used in irrigation for different fodder beet cultivars, Rota cultivar gave a yield for the roots and leaves of about 140 tons acre-’ with the weight of some roots about 45-50kg plant-’. In addition, the fresh leaves can be used for feeding cattle, sheep, and goats during spring months.

On the other hand, the winter growing Brassica napus oil seed rape requires less water than summer oil crops. Rape seed oil is used for in cooking and margarine production. Var. AD 201 gave the highest yield about 1.34 tons acre-’, Wester cv. only gave 0.715 tons from seeds. Barley: some cultivars can resist salinity and give higher yield from kernels and hay, about 1.4 tons of kernels and 2.9 hay acre-’ or 1.6 tons of kernels and 3.05 of hay acre-’ under high nitrogen and phosphorus applications.

The introduction of new genetically engineered Rhizobia and Azotobacter, salt, high temperature and drought tolerant strains suits the new cultivated crops at Sinai Governorate. These strains are suitable to the environment in Sinai where conditions are severe. They are also highly efficient in nitrogen fixation as they reduce fertilization costs, soil pollutants and improve the soil physical properties. The above mentioned strains (tolerating 10-20% NaC1) are originally produced by isolation of the responsible genes from Bacillus sp. strain (tolerating 30% NaCI and 55°C) which is in turn being isolated from the soil of Aswan Governorate. The genes were introduced to the most efficient nitrogen fixing strains of Rhizobia and Azotobacter. The most suitable strains were isolated and introduced in the cultivated areas in Sinai with the new introduced crops. The results of the yield and the nitrogen contents in plants and the soil are significantly higher than those of the control areas where these strains are not applied and are fertilized with other kinds of fertilizers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, A.M.M., Ahmed, K.A., Hamoda, M.H. & Sharaf, A.N. 1984. Mutagenicity carcinogenicity of organically and chemically fertilized Zea mays shoots and roots extracts in different biological systems. Bull. Fac. Agric., Cairo Univ. 35: 401–409.

    Google Scholar 

  • Ali, A.M.M. & Abd El-Halim, M.M. 1988. The location of osmoregulatory genes in barley and Bacillus as donors and their insertion in Azotobacter chrococcum genome. Egyptian Society of Genetic Engineering Second Annual Meeting. 27–28 January, 1988.

    Google Scholar 

  • Ali, A.M.M., Abd El-Halim, M.M., Sayed, A.I.H. & Abd El-Aal, S.Kh. 1988a. Unique and repeated DNA sequences in two Phaseolus vulgaris inbreds and in the F6 of their hybrid. Bull. Fac. Agric., Cairo Univ. 39: 169–177.

    Google Scholar 

  • Ali, A.M.M.. Abd El-Halim, M.M., Sayed, A.I.H. & Abd El-Aal, S.Kh. 1988b. The role of eukaryotic repetitive DNA sequences in frame shift mutants repair. Bull. Fac. Agric., Cairo Univ. 39: 639–646.

    Google Scholar 

  • Allen, O.N. 1959. Experimentation in soil bacteriology. Burgess Publishing Co., Mameopolis, Minnesota.

    Google Scholar 

  • Ames, B.N., McCann, J. & Yamasaki. E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella, mammalian-microsome mutagenicity test. Mutation Res 31 (6): 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Bendicle, A.J. & Bolton, E.T. 1967. Relatedness among plants as measured by the DNA agar technique. Plant Physiol. 42: 939–967.

    Google Scholar 

  • Bergersen, F.J. 1977. Physiological chemistry of dinitrogen fixation by legumes. In: R.W.F. Hardy & W.S. Silver (eds) A Treatise in Dinitrogen Fixation, pp.519–555. John Wiley, New York.

    Google Scholar 

  • Britten, R.J. & Kohne, D.E. 1968. Repeated sequences in DNA. Science 161: 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S.A., Chang, A.C.Y. & Hus, L. 1972. Non-chromosomal antibiotic resistance in bacteria: genetic transformation of E. coli by R. factor DNA. Proc. Natl. Acad. Sci. USA 69: 2110–2114.

    Article  CAS  Google Scholar 

  • Dart, P.J. 1977. Infection and development of leguminous nodules. In: R.W.F. Hardy & W.S. Silver (eds) A Treatise in Dinitrogen Fixation. Section III. Biology, pp.367–472. John Wiley, New York.

    Google Scholar 

  • O’Leary, J.W. 1985. Salt water crops. Chemtech. 15 (9): 562–566. Shay, G. 1990. Saline agriculture, salt tolerance plants for developing countries. National Academic Press, Washington DC.

    Google Scholar 

  • Smith, D.B. Si. Flavell, R.B. 1974. The relatedness and evaluation of repeated nucleatide sequences in the genomes of some Gramineae species. Biochem. Genet. 12: 243–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El-Saidi, M.T., Ali, A.M.M. (1993). Growing different field crops under high salinity levels and utilization of genetically engineered Rhizobia and Azotobacter salt drought tolerant strains. In: Lieth, H., Al Masoom, A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1860-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1860-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4822-4

  • Online ISBN: 978-94-011-1860-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics