Skip to main content

Occurrence and function of mycorrhiza in environmentally stressed soils

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 22))

Abstract

Morphological characteristics are given for the different types of mycorrhiza, and their occurrence through the plant kingdom is surveyed, considering some geographical and ecological aspects. Attention is paid to the functioning of mycorrhizas, particulary in a number of stress situations, with an emphasis on salty and heavy metal contaminated soils. For natural populations it can be concluded that in moderately stressed situations a lot of seed plants grow profited by the presence of mycorrhizas, while in heavily stressed situations only a few species grow, having (nearly) no mycorrhizas. Finally it is concluded that fairly much is known on the function of mycorrhizas for crop plants, but very little for natural populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M. F., Moore, T. S. Jr. & Christensen, M., 1980. Phyto-hormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can. J. Bot. 58: 371–374.

    Article  CAS  Google Scholar 

  • Allen, M. F., Smith, W. K., Moore, T. S. Jr. & Christensen, M., 1981. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis. New Phytol. 88: 683–693.

    Article  Google Scholar 

  • Amijee, F., Tinker, P. B. & Stribley, D. P., 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111: 435–446.

    Article  Google Scholar 

  • Barham, R. O., Marx, D. H. & Ruehle, J. L., 1974. Infections of ectomycorrhizal and nonmycorrhizal roots of shortleaf pine by nematodes and Phytophthora cinnamoni. Phytopathol. 64: 1260–1264.

    Article  Google Scholar 

  • Bradley, R., Burt, A. J. & Read, D. J., 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91: 197–209.

    Article  CAS  Google Scholar 

  • Cooper, K. M., 1984. Physiology of VA mycorrhizal associations. In: Powell, C. L. & Bagyaraj, D. J. (eds), VA Mycorrhiza, CRC Press, Boca Raton pp. 155–186.

    Google Scholar 

  • Dehne, H.-W. & Schönbeck, F., 1979. Untersuchungen zum Einfluß der endotrophen Mykorrhiza auf Pflanzenkrankheiten. I. Ausbreitung von Fusarium oxysporum f.sp. lycopersici in Tomaten. Phytopathol. Z. 95: 105–110.

    Article  Google Scholar 

  • Denny, H. J. & Wilkins, D. A., 1987. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106: 545–553.

    CAS  Google Scholar 

  • Englander, C. M. & Corden, M. E., 1971. Stimulation of mycelial growth of Endothia parasitica by heavy metals. Appl. Microbiol. 22: 1012–1016.

    PubMed  CAS  Google Scholar 

  • Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., Van Duin, W. E. & Oolbekkink, G. T., 1984. Vesicular-arbuscular mycorrhizae in dune vegetation. Acta Bot. Neerl. 35: 151–160.

    Google Scholar 

  • Ernst, W. H. O., 1985. Impact of mycorrhiza on metal uptake and translocation by forest plants. Proc. Int. Conf. Heavy Metals Environ. Edinburgh pp. 596–599.

    Google Scholar 

  • Fitter, A. H., 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol. 79: 119–125.

    Article  CAS  Google Scholar 

  • Gildon, A. & Tinker, P. B., 1981. A heavy metal-tolerant strain of a mycorrhizal fungus. Trans. Br. mycol. Soc. 77: 648–649.

    Article  Google Scholar 

  • Gildon, A. & Tinker, P. B., 1983. Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95: 247–261.

    Article  CAS  Google Scholar 

  • Griffioen, W. A. J. & Ernst, W. H. O., 1990. The role of VA mycorrhiza in the heavy metal tolerance of Agrostis capillaris L. Agric. Ecosyst. & Environ. 29: 173–177.

    Article  Google Scholar 

  • Harley, J. L. & Harley, E. L., 1987. A check-list of mycorrhiza in the British flora. New Phytol. suppl. to 105: 1–102.

    Article  Google Scholar 

  • Harley, J. L. & Smith, S. E., 1983. Mycorrhizal Symbiosis. Academic Press, London, New York.

    Google Scholar 

  • Maystead, A., Malajczuk, N. & Grove, T. S., 1988. Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 108: 417–423.

    Article  Google Scholar 

  • Incoll, L. D. & Whitelam, G. C., 1977. The effect of kinetin on stomata of the grass Anthephera pubescens Nees. Planta 137: 243–245.

    Article  CAS  Google Scholar 

  • Jasper, D. A., Robson, A. D. & Abbott, L. K., 1979. Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol. Biochem. 11: 501–505.

    Article  CAS  Google Scholar 

  • Killham, K. and Firestone, M. K., 1983. Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72: 39–48.

    Article  CAS  Google Scholar 

  • Koide, R., Li, M., Lewis, J. & Irby, C., 1988. Role of mycorrhizal infection in growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia 77: 537–543.

    Article  Google Scholar 

  • Mathys, W., 1977. The role of malate, oxalate, and musterd oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant. 40: 130–136.

    Article  CAS  Google Scholar 

  • Menge, J. A., Steirle, D., Bagyaraj, D. J., Johnson, E. L. & Leonard, R. T., 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575–578.

    Article  CAS  Google Scholar 

  • Morselt, A. F. W., Smits, W. T. M. & Limonard, T., 1986. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil 96: 417–420.

    Article  CAS  Google Scholar 

  • Nishizono, H., Ichikawa, H., Suzuki, S. & Ishii, F., 1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101: 15–20.

    Article  CAS  Google Scholar 

  • Powell, C. L. & Bagyaraj, D. J. (eds.), 1984. VA Mycorrhiza. CRC Press, Boca Raton.

    Google Scholar 

  • Rauser, W. E., 1984. Copper-binding protein and copper tolerance in Agrostis gigantea. Plant Sci. Lett. 33: 239–247.

    Article  CAS  Google Scholar 

  • Reeves, F. B., Wagner, D., Moorman, T & Kiel, J., 1979. The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of mycorrhizae in several disturbed vs. natural environments. Amer. J. Bot. 66: 6–13.

    Article  Google Scholar 

  • Rose, S. L., 1988. Above and below ground community development in a marine sand dune ecosystem. Plant Soil 109: 215–226.

    Article  Google Scholar 

  • Rozema, J., Arp, W., Van Esbroek, M. & Broekman, R., 1985. Relaties tussen autotrofe en heterotrofe planten op kwelders. Vakbl. Biol. 65: 465–468.

    Google Scholar 

  • Rozema, J., Arp, W., Van Esbroek, M., Broekman, R., Punte, H. & Schat, H., 1986a. Vesicular-arbuscular mycorrhiza in salt marsh plants in response to soil salinity and flooding and the significance to the water relations. In: Physiological and Genetical Aspects of Mycorrhizae. INRA, Paris pp. 657–660.

    Google Scholar 

  • Rozema, J., Arp, W., Van Diggelen, J., Van Esbroek, M., Broekman, R. & Punte, H., 1986b. Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 35: 457–467.

    Google Scholar 

  • Safir, G. R., Boyer, J. S. & Gerdemann, J. W., 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol. 49: 700–703.

    Article  PubMed  CAS  Google Scholar 

  • Schenck, N. C. (ed.), 1984. Methods and Principles of Mycorrhizal Research. American Phytopathology Society, St. Paul, Minnesota.

    Google Scholar 

  • Schönbeck, F., 1979. Endomycorrhiza in relation to plant diseases. In: B. Schippers & W. Gams (eds.), Soil-borne Plant Pathogens, Academic Press, London pp. 271–280.

    Google Scholar 

  • Schönbeck, F. & Spengler, G., 1979. Nachweis von TMV in Mykorrhiza-haltigen Zellen der Tomate mit Hilfe der Immunofluoreszenz. Phytopathol. Z. 94: 84–86.

    Article  Google Scholar 

  • Schubert, A. & Hayman, D.S., 1986. Plant growth responses to vesicular-arbuscular mycorrhiza. XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytol. 103: 79–90.

    Article  Google Scholar 

  • Søndergaard, M. & Laegaard, S., 1977. Vesicular-arbuscular mycorrhiza in some aquatic plants. Nature 268: 232–233.

    Article  Google Scholar 

  • Stubblefield, S. P., Taylor, T.N. & Trappe, J. M., 1987. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. Amer. J. Bot. 74: 1904–1911.

    Article  Google Scholar 

  • Thomson, B.D., Robson, A.D. & Abbott, L.K., 1986. Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103: 751–765.

    Article  Google Scholar 

  • Tommerup, I. C., 1985. Inhibition of spore germination of vesicular-arbuscular mycorrhizal fungi in soil. Trans. Br. Mycol. Soc. 85: 267–278.

    Article  Google Scholar 

  • Van der Zaag, P., Fox, R. L., De La Pena, R. S. & Yost, R. S., 1979. P nutrition of Cassava including mycorrhizal effects on P, K, S, Zn and Ca uptake. Field Crops Res. 2: 253–263.

    Article  Google Scholar 

  • Van Duin, W. E., Rozema, J. & Ernst, W. H. O., 1990. Seasonal and spatial variation in the occurrence of vesicular arbuscular (VA) mycorrhiza in salt marsh plants. Agric. Ecosyst. & Environ. 29: 107–110.

    Article  Google Scholar 

  • Verkleij, J. A. C., Koevoets, P., Van’t Riet, J., Van Rossen-berg, M., Bank, R. & Ernst, W. H. O., 1989. The role of metal-binding compounds in the copper tolerance mechanism of Silene cucubalus. In: D. H. Hamer & D. R. Winge (eds.), Metal Ion Homeostasis: Molecular Biology and Chemistry. Alan R. Liss, Inc., New York pp. 347–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Van Duin, W.E., Griffioen, W.A.J., Ietswaart, J.H. (1991). Occurrence and function of mycorrhiza in environmentally stressed soils. In: Rozema, J., Verkleij, J.A.C. (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0599-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0599-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6757-7

  • Online ISBN: 978-94-009-0599-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics