Skip to main content

Heavy Atom Effects in Proton Tunneling Phenomena

  • Chapter
Low Temperature Molecular Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 483))

  • 356 Accesses

Abstract

Intramolecular H tunneling is often analyzed using 1-D theoretical models, or improved models providing a minimum energy pathway defined by model 2- or 3-D PEFs, or models coupling a 1-D tunneling coordinate to a vibrational bath representing all other modes. The analysis of a tunneling coordinate strongly coupled to one or two heavy atom vibrational modes is of much current interest. This problem, which includes heavy atom vibrational-assisted H tunneling, is experimentally accessible to the methods of low-temperature spectroscopy on molecular beam, matrix-isolated, and solid state samples. Heavy atom effects on intramolecular H tunneling, primarily as observed by optical spectroscopy, are considered in this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, E. B., Decius J. C., and Cross, P. C. (1980) Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, Inc.,New York.

    Google Scholar 

  2. Lines, M. and Glass, A. M. (1977) Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford.

    Google Scholar 

  3. Hamilton, W. C. and Ibers, F. A. (1963) Structures of HCrO2 and DCrO2 Acta Cryst. 16, 1209–1212.

    Article  CAS  Google Scholar 

  4. Tun, Z., Nelmes, R. J., Kuhs, W. F., and Stansfield, R. F. D. (1988) A high-resolution neutron-diffraction study of the effects of deuteration on the ciystal structure of KH2PO4 J. Phys. C: Solid State Phys. 21, 245–248.

    Article  CAS  Google Scholar 

  5. Nelmes, R. J. (1987) Structural studies of KDP and the KDP-type transition by neutron and X-ray diffraction: 1970–1985 Ferroelectrics 16, 87–123.

    Article  Google Scholar 

  6. Tomkinson, J., Taylor, A. D., Howard, J., Eckert, J., and Goldstone, J. A. (1985) The inelastic neutron scattering spectrum of chromous acid at high energy transfers, J. Chem. Phys. 82,1112–1114.

    Article  CAS  Google Scholar 

  7. Shibata, K. and Ikeda, S. (1992) Incoherent inelastic neutron scattering from the hydrogen-bonded compound KH2PO4 J. Phys. Soc. Jpn. 61, 411–414.

    Article  CAS  Google Scholar 

  8. Mizoguchi, K., Nakai, Y., Ikeda, S., Agui, A., Tominaga, Y. (1993) Vibrational modes of deuterium in potassium dideuterium phosphate, J. Phys. Soc. Jpn. 62, 451–454.

    Article  CAS  Google Scholar 

  9. Snyder, R. G. and Ibers, J. A. (1962) O-H-O and O-D-O potential energy curves for chromous acid, J. Chem. Phys. 36, 1356–1360.

    Article  CAS  Google Scholar 

  10. Viswanath, R. S. and Miller, P. J. (1979) IR overtone spectra of KDP, ADP, RDP and H2SeO3, and their temperature dependence, Solid State Comm. 29, 163–166.

    Article  CAS  Google Scholar 

  11. Peercy, P. S. (1975) Measurement of the “soft” mode and coupled modes in the paraelectric and ferroelectric phases of KH2PO4 at high pressure, Phys. Rev. B, 12, 2725–2740.

    Google Scholar 

  12. Lawrence, M. C. and Robertson, G. N. (1987) The interpretation of the neutron inelastic scattering and infrared absorption spectra of chromous acid using the double Morse potential model, J. Chem. Phys. 87, 3375–3380.

    Article  CAS  Google Scholar 

  13. Lawrence, M. C. and Robertson, G. N. (1981) Estimating the proton potential in KDP from infrared and ciystallographic data, Ferroelectrics 34, 179–186.

    Article  CAS  Google Scholar 

  14. Lawrence, M. C. and Robertson, G. N. (1981) Proton tunnelling in chromous acid, Mol. Phys. 43, 193–213.

    Article  CAS  Google Scholar 

  15. Lawrence, M. C. and Robertson, G. N. (1980) The temperature and pressure dependence of the proton tunneling frequency in KDP, J. Phys. C: Solid St. Phys. 13, L1053–1059.

    Article  CAS  Google Scholar 

  16. Vener, M. V., Scheiner, S., and Sokolov, N. D. (1994) Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone, J. Chem. Phys. 101, 9755–9765.

    Article  CAS  Google Scholar 

  17. Sokolov, N. D. and Savel’ev, V. A. (1977) Dynamics of the hydrogen bond: two-dimensional model and isotope effects, Chem. Phys. 22, 383–399.

    Article  CAS  Google Scholar 

  18. Sokolov, N. D. and Savel’ev, V. A. (1994) Isotope effects in weak hydrogen bonds. Allowance for two stretching and two bending modes of the A-H…B fragment, Chem. Phys. 181, 305–317.

    Article  CAS  Google Scholar 

  19. Barton, S. A. and Thorson, W. R. (1979) Vibrational dynamics of hydrogen bonds. I. FHF system, J. Chem. Phys. 71, 4263–4283.

    Article  CAS  Google Scholar 

  20. Almlof, J. (1972) Hydrogen bond studies. 71. Ab initio calculation of the vibrational structure and equilibrium geometry of HF2 and DF2 Chem. Phys. Lett. 17, 49–52.

    Article  CAS  Google Scholar 

  21. Jiang, G. J. and Anderson, G. R. (1973) A semiempirical study of hydrogen bonding in the bifluoride ion, J. Phys. Chem. 77, 1764–1768

    Article  CAS  Google Scholar 

  22. Cote, G. L. and Thompson, H. W. (1951) Infra-red spectra and the solid state, III. Potassium bifluoride, Proc. R. Soc. London Ser. A 210, 206–216.

    Article  Google Scholar 

  23. Firth, D. W., Beyer, K., Dvorak, M. A., Reeve, S. W., Grushow, A., and Leopold, K. R. (1991) Tunable far-infrared spectroscopy of malonaldehyde, J. Chem. Phys. 94, 1812–1819.

    Article  CAS  Google Scholar 

  24. Baughcum, S. L., Smith, Z., Wilson, E. B., and Duerst, R. W. (1984) Microwave spectroscopic study of malonaldehyde. 3. Vibration-rotation interaction and one-dimensional model for proton tunneling, J. Am. Chem. Soc. 106, 2260–2265.

    Article  CAS  Google Scholar 

  25. Turner, P., Baughcum, S. L., Coy, S. L., and Smith, Z. (1984) Microwave spectroscopic study of malonaldehyde. 4. Vibration-rotation interaction in parent species, J. Am. Chem. Soc. 106, 2265–2267.

    Article  CAS  Google Scholar 

  26. Shida, N., Barbara, P. F., and Almlof, J. E. (1989) A theoretical study of multidimensional nuclear tunneling in malonaldehyde, J. Chem. Phys. 91, 4061–4072.

    Article  CAS  Google Scholar 

  27. Arias, A., Wasserman, T. A. W., and Vaccaro, P. H. (1995) Nonlinear optical spectroscopy of malonaldehyde: an investigation of proton-transfer dynamics in the first excited singlet state, 50th Annual Ohio State University International Symposium on Molecular Spectroscopy, Abstract TH08.

    Google Scholar 

  28. Alves, A. C. P. and Hollas, J. M. (1972) The near ultra-violet spectrum of tropolone vapour and its relevance to the molecular structure I. Rotational band contour analysis Mol. Phys. 23, 927–945.

    Article  CAS  Google Scholar 

  29. Alves, A. C. P. and Hollas, J. M. (1973) The near ultra-violet absorption spectrum of tropolone vapour II. Vibrational analysis Mol. Phys. 25, 1305–1314.

    Article  CAS  Google Scholar 

  30. Tomioka, Y., Ito, M., and Mikami, N. (1983) Electronic spectra of tropolone in a supersonic free jet. Proton tunneling in the S1 state J. Phys. Chem. 87, 4401–4405.

    Article  CAS  Google Scholar 

  31. Redington, R. L., Chen, Y., Scherer, G. J., and Field, R. W. (1988) Laser fluorescence excitation spectrum of jet-cooled tropolone: the A1B2-X1 A1 system J. Chem. Phys. 88, 627–633.

    Article  CAS  Google Scholar 

  32. Sekiya, H., Nagashima, Y., and Nishimura, Y. (1990) Electronic spectra of jet-cooled tropolone. Effect of the vibrational excitation on the proton tunneling dynamics J. Chem. Phys. 92, 5761–5769.

    Article  CAS  Google Scholar 

  33. Sekiya, H., Nagashima, Y., and Nishimura, Y. (1989) The electronic spectra of jet-cooled tropolone. Vibrational assignment for the A1B2-X1A1 transition Bull. Chem. Soc. Jpn. 62, 3229–3231.

    Article  CAS  Google Scholar 

  34. Sekiya, H., Nagashima, Y., and Nishimura, Y. (1989) Electronic spectra of jet-cooled tropolone(-OD). Vibrational analysis for the A1B2-X1AI transition Chem. Phys. Lett. 160, 581–585.

    Article  CAS  Google Scholar 

  35. Alves, A. C. P., Hollas, J. M., Musa, M., and Ridley, T. (1985) The 370-nm electronic spectrum of tropolone: evidence from single vibronic level fluorescence spectra regarding the assignment of some vibrational fundementals in the X and A states J. Molec. Spectrosc. 109, 99–122.

    Article  CAS  Google Scholar 

  36. Tanaka, K., Honjyo, H., Tanaka, T., Takaguchi, H., Ohshima, Y., and Endo, Y. (1991) Abstracts of the Meeting of the Molecular Structure, Yokohama, Japan, (unpublished), p. 223.

    Google Scholar 

  37. Redington, R. L. and Redington, T. E. (1979) Tropolone monomer: vibrational spectrum and proton tunneling J. Mol. Spectrosc. 78, 229–247.

    Article  CAS  Google Scholar 

  38. Redington, R. L. (1990) Heavy atoms and tunneling in the X state of tropolone J. Chem. Phys. 92, 6447–6455.

    Article  CAS  Google Scholar 

  39. Rossetti, R. and Brus, L. E. (1980) Proton tunneling dynamics and an isotopically dependent equilibrium geometry in the lowest excited n-n* singlet state of tropolone J. Chem. Phys. 73, 1546–1550.

    Article  CAS  Google Scholar 

  40. Redington, R. L., Redington, T. E., Hunter, M. A., and Field, R. W. (1990) A1B2-X1A1 26v 0transitions of 18O-enriched tropolone J. Chem. Phys. 92, 6456–6462.

    Article  CAS  Google Scholar 

  41. Sekiya, H., Sasaki, K., Nishimura, Y., Li, Z.-H., Mori, A., and Takeshita, H. (1990) 18O/16O isotope effect on the laser fluorescence excitation spectrum of jet-cooled tropolone Chem. Phys. Lett. 173, 285–290.

    Article  CAS  Google Scholar 

  42. Hameka, H. F. and de la Vega, J. R. (1984) Intramolecular proton exchange in near symmetric cases, J. Am. Chem. Soc. 106, 7703–7705.

    Article  CAS  Google Scholar 

  43. Ensminger, F. A., Plassard, J., Zwier, T. S., and Hardingen S. (1995) Mode-selective photoisomerization in 5-hydroxytropolone. 1. Experiment J. Chem. Phys. 102, 5246–5259.

    Article  CAS  Google Scholar 

  44. Redington, R. L. and Bock, C. W. (1991) MO study of singlets, triplets, and tunneling in tropolone. 1. Geometries, tunneling, and vibrations in the ground electronic state J. Phys. Chem. 95, 10284–10294.

    Article  CAS  Google Scholar 

  45. Nash, J. J., Zwier, T. S., and Jordan, K. D. (1995) Mode-selective photoisomerization in 5- hydroxytropolone. II. Theory, J. Chem. Phys. 102, 5260–5270.

    Article  CAS  Google Scholar 

  46. Takada, S. and Nakamura, H. (1995) Effects of vibrational excitation on multidimensional tunneling: general study and proton tunneling in tropolone J. Chem. Phys. 102, 3977–3992.

    Article  CAS  Google Scholar 

  47. Takada, S. and Nakamura, H (1994) Wentzel-Kramers-Brillouin theory of multidemensional tunneling: general theory for energy splitting J. Chem. Phys. 100, 98–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Redington, R.L. (1996). Heavy Atom Effects in Proton Tunneling Phenomena. In: Fausto, R. (eds) Low Temperature Molecular Spectroscopy. NATO ASI Series, vol 483. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0281-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0281-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6611-2

  • Online ISBN: 978-94-009-0281-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics