Skip to main content

Overview of Other Results and Open Problems

  • Chapter
Accuracy Verification Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 32))

  • 1385 Accesses

Abstract

This chapter presents an overview of results related to error control methods, which were not considered in previous chapters. In the first part, we discuss possible extensions of the theory exposed in Chaps. 3 and 4 to nonconforming approximations and certain classes of nonlinear problems. Also, we shortly discuss some results related to explicit evaluation of modeling errors. The remaining part of the chapter is devoted to a posteriori estimates of errors in iteration methods. Certainly, the overview is not complete. A posteriori error estimation methods are far from having been fully explored and this subject contains many unsolved problems and open questions, some of which we formulate in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Acosta, R. Duran, An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132(1), 195–202 (2003)

    MathSciNet  Google Scholar 

  2. G. Alefeld, J. Herzberger, Introduction to Interval Computations. Computer Science and Applied Mathematics (Academic Press, New York, 1983). Translated from the German by Jon Rokne

    MATH  Google Scholar 

  3. G. Akrivis, C. Makridakis, R.H. Nochetto, Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118(3), 429–456 (2011)

    MathSciNet  MATH  Google Scholar 

  4. O. Axelsson, Iterative Solution Methods (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  5. R. Barrett, M. Berry, T.F. Chan et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, Philadelphia, 1994)

    Google Scholar 

  6. R. Becker, M. Braack, R. Rannacher, T. Richter, Mesh and model adaptivity for flow problems, in Reactive Flows, Diffusion and Transport, ed. by W. Jager, R. Rannacher, J. Warnatz (Springer, Berlin, 2007), pp. 47–75

    Google Scholar 

  7. M. Braack, A. Ern, A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003)

    MathSciNet  MATH  Google Scholar 

  8. D. Braess, R.W.H. Hoppe, J. Schöberl, A posteriori estimators for obstacle problems by the hypercircle method. Comput. Vis. Sci. 11(4–6), 351–362 (2008)

    MathSciNet  Google Scholar 

  9. R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)

    MathSciNet  MATH  Google Scholar 

  10. M. Bildhauer, M. Fuchs, S. Repin, Duality based a posteriori error estimates for higher order variational inequalities with power growth functionals. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 33(2), 475–490 (2008)

    MathSciNet  MATH  Google Scholar 

  11. S. Bartels, A. Mielke, T. Roubíček, Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal. 50(2), 951–976 (2012)

    MathSciNet  MATH  Google Scholar 

  12. H.M. Buss, S.I. Repin, A posteriori error estimates for boundary value problems with obstacles, in Numerical Mathematics and Advanced Applications, ed. by P. Neittaanmäki, T. Tiihonen, P. Tarvainen. Jyväskylä, 1999 (World Scientific, River Edge, 2000), pp. 162–170

    Google Scholar 

  13. R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    MathSciNet  MATH  Google Scholar 

  14. M. Bildhauer, S. Repin, Estimates of the deviation from the minimizer for variational problems with power growth functionals. J. Math. Sci. (N.Y.) 143(2), 2845–2856 (2007)

    MathSciNet  Google Scholar 

  15. D. Braess, A posteriori error estimators for obstacle problems—another look. Numer. Math. 101(3), 421–451 (2005)

    MathSciNet  Google Scholar 

  16. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Chichester, 2003)

    MATH  Google Scholar 

  17. S. Cochez-Dhondt, S. Nicaise, S. Repin, A posteriori error estimates for finite volume approximations. Math. Model. Nat. Phenom. 4(1), 106–122 (2009)

    MathSciNet  MATH  Google Scholar 

  18. A. Charbonneau, K. Dossou, R. Pierre, A residual-based a posteriori error estimator for Ciarlet-Raviart formulation of the first biharmonic problem. Numer. Methods Partial Differ. Equ. 13(1), 93–111 (1997)

    MathSciNet  MATH  Google Scholar 

  19. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  20. Z. Chen, R.H. Nochetto, Rezidual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84(4), 527–548 (2000)

    MathSciNet  MATH  Google Scholar 

  21. L. Collatz, Funktionanalysis und Numerische Mathematik (Springer, Berlin, 1964)

    Google Scholar 

  22. P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (Springer, Berlin, 2004)

    Google Scholar 

  23. M. Dobrowolski, On the LBB constant on stretched domains. Math. Nachr. 254/255, 64–67 (2003)

    MathSciNet  Google Scholar 

  24. T. Eirola, A.M. Krasnosel’skii, M.A. Krasnosel’skii, N.A. Kuznersov, O. Nevanlinna, Incomplete corrections in nonlinear problems. Nonlinear Anal. 25(7), 717–728 (1995)

    MathSciNet  MATH  Google Scholar 

  25. H.W. Engl, O. Scherzer, Convergence rates results for iterative methods for solving nonlinear ill-posed problems, in Surveys on Solution Methods for Inverse Problems, ed. by D. Colton, H.W. Engl, A.K. Louis, J.R. McLaughlin, W. Rundell (Springer, Vienna, 2000), pp. 7–34

    Google Scholar 

  26. S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)

    MathSciNet  MATH  Google Scholar 

  27. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    MathSciNet  MATH  Google Scholar 

  28. M. Farhloul, S. Nicaise, L. Paquet, A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem. Numer. Methods Partial Differ. Equ. 25(4), 843–869 (2009)

    MathSciNet  MATH  Google Scholar 

  29. M. Fuchs, S. Repin, A posteriori error estimates of functional type for variational problems related to generalized Newtonian fluids. Math. Methods Appl. Sci. 29(18), 2225–2244 (2006)

    MathSciNet  MATH  Google Scholar 

  30. M. Fuchs, S. Repin, Estimates of the deviations from the exact solutions for variational inequalities describing the stationary flow of certain viscous incompressible fluids. Math. Methods Appl. Sci. 33(9), 1136–1147 (2010)

    MathSciNet  MATH  Google Scholar 

  31. M. Frolov, Reliable control over approximation errors by functional type a posteriori estimates. Ph.D. thesis, Jyväskylä Studies in Computing 44, University of Jyväskylä, 2004

    Google Scholar 

  32. A. Günther, M. Hinze, A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16(4), 307–322 (2008)

    MathSciNet  MATH  Google Scholar 

  33. A. Gaevskaya, R.W.H. Hoppe, S. Repin, Functional approach to a posteriori error estimation for elliptic optimal control problems with distributed control. J. Math. Sci. (N.Y.) 144(6), 4535–4547 (2007)

    MathSciNet  MATH  Google Scholar 

  34. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  35. A. Gaevskaya, S. Repin, A posteriori error estimates for approximate solutions of linear parabolic problems. Differ. Equ. 41(7), 970–983 (2005)

    MathSciNet  MATH  Google Scholar 

  36. W.B. Gragg, R.A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)

    MathSciNet  MATH  Google Scholar 

  37. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1977)

    MATH  Google Scholar 

  38. E.G. Geisler, A.A. Tal, D.P. Garg, On a-posteriori error bounds for the solution of ordinary nonlinear differential equations, in Computers and Mathematics with Applications, ed. by E.Y. Rodin (Pergamon, Oxford, 1976), pp. 407–416

    Google Scholar 

  39. Y. Hayashi, On a posteriori error estimation in the numerical solution of systems of ordinary differential equations. Hiroshima Math. J. 9(1), 201–243 (1979)

    MathSciNet  MATH  Google Scholar 

  40. M. Hintermüller, R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    MathSciNet  MATH  Google Scholar 

  41. M. Hintermüller, R.H.W. Hoppe, Y. Iliash, M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14(3), 540–560 (2008)

    MathSciNet  MATH  Google Scholar 

  42. R.H.W. Hoppe, R. Kornhuber, Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31(2), 301–323 (1994)

    MathSciNet  MATH  Google Scholar 

  43. R.H.W. Hoppe, M. Kieweg, Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems. Comput. Optim. Appl. 46(3), 511–533 (2010)

    MathSciNet  MATH  Google Scholar 

  44. J. Haslinger, P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. (Wiley, Chichester, 1996)

    MATH  Google Scholar 

  45. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin, 1993)

    MATH  Google Scholar 

  46. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. (Springer, Berlin, 1996)

    MATH  Google Scholar 

  47. P. Jiranek, Z. Strakos, M. Vohralik, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010)

    MathSciNet  MATH  Google Scholar 

  48. A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis (Dover, New York, 1975)

    Google Scholar 

  49. L.Yu. Kolotilina, On Ostrowski’s disk theorem and lower bounds for the smallest eigenvalues and singular values. J. Math. Sci. (N.Y.) 176(1), 68–77 (2011)

    MathSciNet  Google Scholar 

  50. R. Kornhuber, A posteriori error estimates for elliptic variational inequalities. Comput. Math. Appl. 31(1), 49–60 (1996)

    MathSciNet  MATH  Google Scholar 

  51. A.S. Leonov, Some a posteriori stopping rules for iterative methods for solving linear ill-posed problems. Comput. Math. Math. Phys. 34(1), 121–126 (1994)

    MathSciNet  Google Scholar 

  52. E. Lindelöf, Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre, in Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, vol. 116, ed. by M.J. Bertrand (Impremerie Gauthier-Villars et Fils, Paris, 1894), pp. 454–457

    Google Scholar 

  53. R. Lazarov, S. Repin, S. Tomar, Functional a posteriori error estimates for discontinuous Galerkin method. Numer. Methods Partial Differ. Equ. 25(4), 952–971 (2009)

    MathSciNet  MATH  Google Scholar 

  54. P. Meyer, A unifying theorem on Newton’s method. Numer. Funct. Anal. Optim. 13(5–6), 463–473 (1992)

    MathSciNet  MATH  Google Scholar 

  55. P. Mosolov, P. Myasnikov, Mechanics of Rigid Plastic Bodies (Nauka, Moscow, 1980). In Russian

    Google Scholar 

  56. C. Makridakis, R.H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104(4), 489–514 (2006)

    MathSciNet  MATH  Google Scholar 

  57. S. Matculevich, P. Neittaanmäki, S. Repin, Guaranteed error bounds for a class of Picard-Lindelof iteration methods, in Numerical Methods for Differential Equations, Optimization, and Technological Problems, ed. by S. Repin, T. Tiihonen, T. Tuovinen (Springer, Berlin, 2012), pp. 151–168

    Google Scholar 

  58. I. Moret, A Kantorovich-type theorem for inexact Newton methods. Numer. Funct. Anal. Optim. 10(3–4), 351–365 (1989)

    MathSciNet  MATH  Google Scholar 

  59. O. Mali, S. Repin, Estimates of the indeterminacy set for elliptic boundary-value problems with uncertain data. J. Math. Sci. 150(1), 1869–1874 (2008)

    MathSciNet  Google Scholar 

  60. O. Mali, S. Repin, Two-sided estimates of the solution set for the reaction-diffusion problem with uncertain data, in Issue Dedicated to the Jubilee of Prof. R. Glowinski, ed. by W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmäki, J. Periaux, O. Pironneau. Comput. Methods Appl. Sci., vol. 15 (Springer, New York, 2010), pp. 183–198

    Google Scholar 

  61. D. Meidner, R. Rannacher, J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Math. 17(2), 143–172 (2009)

    MathSciNet  MATH  Google Scholar 

  62. O. Nevanlinna, Remarks on Picard-Lindelöf iteration I. BIT Numer. Math. 29(2), 328–346 (1989)

    MathSciNet  MATH  Google Scholar 

  63. O. Nevanlinna, Remarks on Picard-Lindelöf iteration II. BIT Numer. Math. 29(3), 535–562 (1989)

    MathSciNet  MATH  Google Scholar 

  64. P. Neittaanmäki, S. Repin, A posteriori error estimates for boundary-value problems related to the biharmonic operator. East-West J. Numer. Math. 9(2), 157–178 (2001)

    MathSciNet  MATH  Google Scholar 

  65. P. Neittaanmäki, S. Repin, Reliable Methods for Computer Simulation, Error Control and a Posteriori Estimates (Elsevier, New York, 2004)

    MATH  Google Scholar 

  66. P. Neittaanmäki, S. Repin, A posteriori error majorants for approximations of the evolutionary Stokes problem. J. Numer. Math. 18(2), 119–134 (2010)

    MathSciNet  MATH  Google Scholar 

  67. A. Nazarov, S. Repin, Exact constants in Poincare type inequalities for functions with zero mean boundary traces. Technical report, 2012. arXiv:1211.2224

  68. P. Neff, C. Wieners, Comparison of models for finite plasticity: a numerical study. Comput. Vis. Sci. 6(1), 23–35 (2003)

    MathSciNet  MATH  Google Scholar 

  69. J.T. Oden, I. Babushka, F. Nobile, Y. Feng, R. Tempone, Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Comput. Methods Appl. Mech. Eng. 194(2–5), 195–204 (2005)

    MATH  Google Scholar 

  70. M. Olshanskii, E. Chizhonkov, On the best constant in the infsup condition for prolonged rectangular domains. Ž. Vyčisl. Mat. Mat. Fiz. 67(3), 387–396 (2000). In Russian

    MathSciNet  Google Scholar 

  71. J.T. Oden, S. Prudhomme, D. Hammerand, M. Kuczma, Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Methods Appl. Mech. Eng. 190(49–50), 6663–6684 (2001)

    MathSciNet  MATH  Google Scholar 

  72. J.M. Ortega, The Newton-Kantorovich theorem. Am. Math. Mon. 75, 658–660 (1968)

    MATH  Google Scholar 

  73. A. Ostrowski, Les estimations des erreurs a posteriori dans les procédés itératifs. C. R. Acad. Sci. Paris Sér. A-B 275, A275–A278 (1972)

    MathSciNet  Google Scholar 

  74. L.E. Payne, A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov. IMA J. Appl. Math. 72(5), 563–569 (2007)

    MathSciNet  MATH  Google Scholar 

  75. F. Potra, Sharp error bounds for a class of Newton-like methods. Libertas Math. 5, 71–84 (1985)

    MathSciNet  MATH  Google Scholar 

  76. F.-A. Potra, V. Ptak, Sharp error bounds for Newton’s process. Numer. Math. 34(1), 63–72 (1980)

    MathSciNet  MATH  Google Scholar 

  77. D. Pauly, S. Repin, Functional a posteriori error estimates for elliptic problems in exterior domains. J. Math. Sci. (N.Y.) 163(3), 393–406 (2009)

    MathSciNet  Google Scholar 

  78. D. Pauly, S. Repin, T. Rossi, Estimates for deviations from exact solutions of the Cauchy problem for Maxwell’s equations. Ann. Acad. Sci. Fenn. Math. 36(2), 661–676 (2011)

    MathSciNet  MATH  Google Scholar 

  79. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flanner, Numerical Recipes. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  80. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    MathSciNet  MATH  Google Scholar 

  81. J. Qi-nian, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales. Inverse Probl. 16, 187–197 (2000)

    Google Scholar 

  82. R. Rannacher, The dual-weighted-residual method for error control and mesh adaptation in finite element methods, in The Mathematics of Finite Elements and Applications, X, ed. by J. Whiteman. MAFELAP 1999, Uxbridge (Elsevier, Oxford, 2000), pp. 97–116

    Google Scholar 

  83. R. Rannacher, Adaptive finite element methods for partial differential equations, in Proceedings of the International Congress of Mathematicians, vol. III, ed. by L.I. Tatsien. Beijing, 2002 (Higher Ed. Press, Beijing, 2002), pp. 717–726

    Google Scholar 

  84. S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauč. Semin. POMI 243, 201–214 (1997)

    Google Scholar 

  85. S. Repin, A posteriori estimates for approximate solutions of variational problems with strongly convex functionals. J. Math. Sci. 97(4), 4311–4328 (1999)

    MathSciNet  Google Scholar 

  86. S. Repin, Estimates of deviations from exact solutions of elliptic variational inequalities. Zap. Nauč. Semin. POMI 271, 188–203 (2000)

    Google Scholar 

  87. S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69(230), 481–500 (2000)

    MathSciNet  MATH  Google Scholar 

  88. S. Repin, Estimates for errors in two-dimensional models of elasticity theory. J. Math. Sci. (N.Y.) 106(3), 3027–3041 (2001)

    MathSciNet  Google Scholar 

  89. S. Repin, Estimates of deviations from exact solutions of initial boundary-value problem for the heat equation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13(2), 121–133 (2002)

    MathSciNet  MATH  Google Scholar 

  90. S. Repin, A Posteriori Error Estimates for Partial Differential Equations (de Gruyter, Berlin, 2008)

    Google Scholar 

  91. S. Repin, Estimates of deviations from exact solutions of initial boundary-value problems for the wave equation. J. Math. Sci. (N.Y.) 159(2), 229–240 (2009)

    MathSciNet  MATH  Google Scholar 

  92. S. Repin, Estimates of deviations from exact solutions of variational inequalities based upon Payne-Weinberger inequality. J. Math. Sci. (N.Y.) 157(6), 874–884 (2009)

    MathSciNet  MATH  Google Scholar 

  93. S. Repin, Computable majorants of constants in the Poincare and Friedrichs inequalities. J. Math. Sci. (N.Y.) 186(2), 153–166 (2012)

    MathSciNet  Google Scholar 

  94. S. Repin, T. Rossi, On the application of a posteriori estimates of the functional type to quantitative analysis of inverse problems, in Numerical Methods for Differential Equations, Optimization, and Technological Problems, ed. by S. Repin, T. Tiihonen, T. Tuovinen (Springer, Berlin, 2012), pp. 109–120

    Google Scholar 

  95. S. Repin, S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl. 8(4), 409–428 (2010)

    MathSciNet  MATH  Google Scholar 

  96. S. Repin, S. Sauter, Estimates of the modeling error for the Kirchhoff-Love plate model. C. R. Math. Acad. Sci. Paris 348(17–18), 1039–1043 (2010)

    MathSciNet  MATH  Google Scholar 

  97. S. Repin, S. Sauter, A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70(3), 205–233 (2003)

    MathSciNet  MATH  Google Scholar 

  98. S. Repin, S. Sauter, A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal. 42(4), 1435–1451 (2004)

    MathSciNet  MATH  Google Scholar 

  99. S. Repin, T. Samrowski, S. Sauter, Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces. M2AN Math. Model. Numer. Anal. 46(6), 1389–1405 (2012)

    MathSciNet  MATH  Google Scholar 

  100. S. Repin, T. Samrowski, S. Sauter, Two-sided estimates of the modeling error for elliptic homogenization problems. Technical report 12, University of Zurich, 2012

    Google Scholar 

  101. S. Repin, S. Tomar, Guaranteed and robust error bounds for nonconforming approximations of elliptic problems. IMA J. Numer. Anal. 31(2), 597–615 (2011)

    MathSciNet  MATH  Google Scholar 

  102. S. Repin, J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16(1), 51–81 (2008)

    MathSciNet  MATH  Google Scholar 

  103. S. Repin, J. Valdman, Functional a posteriori error estimates for incremental models in elasto-plasticity. Cent. Eur. J. Math. 7(3), 506–519 (2009)

    MathSciNet  MATH  Google Scholar 

  104. R. Rannacher, B. Vexler, Adaptive finite element discretization in PDE-based optimization. GAMM-Mitt. 33(2), 177–193 (2010)

    MathSciNet  MATH  Google Scholar 

  105. R. Rannacher, J. Vihharev, Balancing discretization and iteration error in finite element a posteriori error analysis, in Numerical Methods for Differential Equations, Optimization, and Technological Problems, ed. by S. Repin, T. Tiihonen, T. Tuovinen (Springer, Berlin, 2012), pp. 85–108

    Google Scholar 

  106. R. Rannacher, A. Westenberger, W. Wollner, Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error. J. Numer. Math. 18(4), 303–327 (2010)

    MathSciNet  MATH  Google Scholar 

  107. S. Repin, L.S. Xanthis, A posteriori error estimation for elastoplastic problems based on duality theory. Comput. Methods Appl. Mech. Eng. 138(1–4), 317–339 (1996)

    MathSciNet  MATH  Google Scholar 

  108. S. Repin, L.S. Xanthis, A posteriori error estimation for nonlinear variational problems. C. R. Acad. Sci., Sér. 1 Math. 324(10), 1169–1174 (1997)

    MathSciNet  MATH  Google Scholar 

  109. Y. Saad, Iterative Methods for Sparse Linear System, 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 2003)

    Google Scholar 

  110. A. Samarski, A. Gulin, Numerical Methods (Nauka, Moscow, 1989). In Russian

    Google Scholar 

  111. E. Stein, S. Ohnimus, Coupled model- and solution-adaptivity in the finite element method. Comput. Methods Appl. Mech. Eng. 150(1–4), 327–350 (1997)

    MathSciNet  MATH  Google Scholar 

  112. M. Schulz, O. Steinbach, A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem. Calcolo 37(2), 79–96 (2000)

    MathSciNet  MATH  Google Scholar 

  113. S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (Izdt. Leningrad. Gos. Univ., Leningrad, 1950). In Russian

    Google Scholar 

  114. Y. Stephan, R. Temam, Finite element computation of discontinuous solutions in the perfect plasticity theory, in Computational Plasticity, Part I, II, ed. by D.R.J. Owen, E. Hinton, E. Oñate. Barcelona, 1987 (Pineridge, Swansea, 1987), pp. 243–256

    Google Scholar 

  115. M. Schmich, B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2007/2008)

    MathSciNet  Google Scholar 

  116. D. Schötzau, T.P. Wihler, A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115(3), 475–509 (2010)

    MathSciNet  MATH  Google Scholar 

  117. K. Tsuruta, K. Ohmori, A posteriori error estimation for Volterra integro-differential equations. Mem. Numer. Math. 3, 33–47 (1976)

    MathSciNet  MATH  Google Scholar 

  118. S. Tomar, S. Repin, Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems. J. Comput. Appl. Math. 226(2), 358–369 (2009)

    MathSciNet  MATH  Google Scholar 

  119. R.S. Varga, Matrix Iterative Analysis (Prentice Hall, Englewood Cliffs, 1962)

    Google Scholar 

  120. R. Verfürth, A posteriori error estimates for nonlinear problems. L r(0,T;L ρ(Ω))-error estimates for finite element discretizations of parabolic equations. Math. Comput. 67(224), 1335–1360 (1998)

    MATH  Google Scholar 

  121. V.M. Vergbitskiy, Numerical Methods. Linear Algebra and Non-linear Equations (Nauka, Moscow, 2000)

    Google Scholar 

  122. R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40(3), 195–212 (2003)

    MathSciNet  MATH  Google Scholar 

  123. R. Verfürth, Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1783–1802 (2005)

    MathSciNet  MATH  Google Scholar 

  124. B. Vexler, W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008)

    MathSciNet  MATH  Google Scholar 

  125. B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)

    MathSciNet  MATH  Google Scholar 

  126. T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors. Numer. Math. 34(2), 189–199 (1980)

    MathSciNet  MATH  Google Scholar 

  127. T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors. II. Numer. Math. 40(2), 201–206 (1982)

    MathSciNet  MATH  Google Scholar 

  128. N. Yamamoto, A simple method for error bounds of the eigenvalues of symmetric matrices. Linear Algebra Appl. 324(1–3), 227–234 (2001)

    MathSciNet  MATH  Google Scholar 

  129. E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems (Springer, New York, 1986)

    MATH  Google Scholar 

  130. Y. Zhou, R. Shepard, M. Minkoff, Computing eigenvalue bounds for iterative subspace matrix methods. Comput. Phys. Commun. 167(2), 90–102 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mali, O., Neittaanmäki, P., Repin, S. (2014). Overview of Other Results and Open Problems. In: Accuracy Verification Methods. Computational Methods in Applied Sciences, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7581-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7581-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7580-0

  • Online ISBN: 978-94-007-7581-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics