Skip to main content

Brassica oleracea (Italica Group)

  • Chapter
  • First Online:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Selected References

  • Abbaoui B, Riedl KM, Ralston RA, Thomas-Ahner JM, Schwartz SJ, Clinton SK, Mortazavi A (2012) Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Mol Nutr Food Res 56:1675–1687

    PubMed  CAS  Google Scholar 

  • Aiamla-or S, Nakajima T, Shigyo M, Yamauchi N (2012) Pheophytinase activity and gene expression of chlorophyll-degrading enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. italica Group) florets. Postharvest Biol Technol 63(1):60–66

    CAS  Google Scholar 

  • Anonymous (2002) Calcium-D-glucarate. Altern Med Rev 7(4):336–339

    Google Scholar 

  • Borowski J, Szajdek A, Borowska EJ, Ciska E, Zieliński H (2008) Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). Eur Food Res Technol 226(3):459–465

    CAS  Google Scholar 

  • Boysen G, Kenney PMJ, Upadhyaya P, Wang M, Hecht SS (2003) Effects of benzyl isothiocyanate and 2-phenethyl isothiocyanate on benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism in F-344 rats. Carcinogenesis 24:517–525

    PubMed  CAS  Google Scholar 

  • Brown L, Rimm EB, Seddon JM, Giovannucci EL, Chasan-Taber L, Spiegelman D, Willett WC, Hankinson SE (1999) A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr 70(4):517–524

    PubMed  CAS  Google Scholar 

  • Buttery RG, Guadagni DG, Ling LC, Seifert RM, Lipton W (1976) Additional volatile components of cabbage, broccoli, and cauliflower. J Agric Food Chem 24(4):829–832

    CAS  Google Scholar 

  • Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW Jr (2007) Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Res 67(2):836–843

    PubMed  CAS  Google Scholar 

  • Carlson DG, Daxenbichler ME, Van Etten CH, Kwolek WF, Williams PH (1987) Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J Am Soc Hortic Sci 112:173–178

    CAS  Google Scholar 

  • Cheo TY, Lu LL, Yang G, Al-Shehbaz I, Dorofeev V (2001) Brassicaceae Burnett. In: Wu ZY, Raven PH (eds) Flora of China, vol 8, Brassicaceae through Saxifragaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21(12):2287–2291

    PubMed  CAS  Google Scholar 

  • Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 64(5):456–463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92(1):61–68

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  • Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240(2):243–252

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Wade KL, Jenkins SN, Shapiro TA, Fuchs EJ, Kerns ML, Talalay P (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomark Prev 16(4):847–851

    CAS  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Benedict AL, Jenkins SN, Ye L, Wehage SL, Talalay P (2010) Dietary glucoraphanin-rich broccoli sprout extracts protect against UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Photochem Photobiol Sci 9(4):597–600

    PubMed Central  PubMed  CAS  Google Scholar 

  • Domínguez-Perles R, Martínez-Ballesta MC, Carvajal M, García-Viguera C, Moreno DA (2010) Broccoli-derived by-products – a promising source of bioactive ingredients. J Food Sci 75(4):C383–C392

    PubMed  Google Scholar 

  • Dwivedi C, Heck WJ, Downie AA, Larroya S, Webb TE (1990) Effect of calcium glucarate on beta-glucuronidase activity and glucarate content of certain vegetables and fruits. Biochem Med Metab Biol 43(2):83–92

    PubMed  CAS  Google Scholar 

  • Eberhardt MV, Kobira K, Keck AS, Juvik JA, Jeffery EH (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. var. italica). J Agric Food Chem 53(19):7421–7431

    PubMed  CAS  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    PubMed  CAS  Google Scholar 

  • Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzopyrene-induced stomach tumors. Proc Natl Acad Sci USA 99(11):7610–7615

    PubMed Central  PubMed  CAS  Google Scholar 

  • FAO (2012) FAO STAT. Food and Agricultural Organization of United Nations, Economic and Social Department, The Statistical Division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res 635(2–3):90–104

    PubMed  CAS  Google Scholar 

  • Fowke JH, Morrow JD, Motley S, Bostick RM, Ness RM (2006) Brassica vegetable consumption reduces urinary F2-isoprostane levels independent of micronutrient intake. Carcinogenesis 27(10):2096–2102

    PubMed  CAS  Google Scholar 

  • Galan MV, Kishan AA, Silverman AL (2004) Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Dig Dis Sci 49(7–8):1088–1090

    PubMed  Google Scholar 

  • Ganin H, Rayo J, Amara N, Levy N, Krief P, Meijler MM (2013) Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med Chem Commun 4(1):175–179

    CAS  Google Scholar 

  • Gao X, Talalay P (2004) Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA 101(28):10446–10451

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gao X, Dinkova-Kostova AT, Talalay P (2001) Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA 98(26):15221–15226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gray AR (1989) Taxonomy and evolution of broccolis and cauliflowers. Baileya 23:28–46

    Google Scholar 

  • Hakooz N, Hamdan I (2007) Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers. Curr Drug Metab 8(1):9–15

    PubMed  CAS  Google Scholar 

  • Hanschen FS, Platz S, Mewis I, Schreiner M, Rohn S, Kroh LW (2012) Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems. J Agric Food Chem 60(9):2231–2241

    PubMed  CAS  Google Scholar 

  • Hansen M, Olsen CE, Poll L, Cantwell MI (1993) Volatile constituents and sensory quality of cooked broccoli florets after aerobic and anaerobic storage. Acta Hortic (ISHS) 343:105–111

    Google Scholar 

  • Haristoy X, Angioi-Duprez K, Duprez A, Lozniewski A (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrob Agents Chemother 47(12):3982–3984

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haristoy X, Fahey JW, Scholtus I, Lozniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71(4):326–330

    PubMed  CAS  Google Scholar 

  • Hashem F, Motawea H, El-Shabrawi AE, Shaker K, El-Sherbini S (2012a) Brassica oleracea var. italica: a nutritional supplement with antimicrobial potential. J Herb Spice Med Plants 18(1):93–100

    CAS  Google Scholar 

  • Hashem FA, Motawea H, El‐Shabrawy AE, Shaker K, El‐Sherbini S (2012b) Myrosinase hydrolysates of Brassica oleracea L. var. italica reduce the risk of colon cancer. Phytother Res 26(5):743–747

    PubMed  CAS  Google Scholar 

  • Hecht SS, Carmella SG, Kenney PM, Low SH, Arakawa K, Yu MC (2004) Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in Singapore Chinese. Cancer Epidemiol Biomark Prev 13(6):997–1004

    CAS  Google Scholar 

  • Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276(34):32008–32015

    PubMed  CAS  Google Scholar 

  • Hermanides HK, Laheÿ-de Boer AM, Zuidmeer L, Guikers C, van Ree R, Knulst AC (2006) Brassica oleracea pollen, a new source of occupational allergens. Allergy 61(4):498–502

    PubMed  CAS  Google Scholar 

  • Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, Chada K, Kong AN (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27(10):2038–2046

    PubMed  CAS  Google Scholar 

  • Ibrahim MA, Nissinen A, Holopainen JK (2005) Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol 31(9):1969–1984

    PubMed  CAS  Google Scholar 

  • Jackson SJ, Singletary KW (2004) Sulforaphane inhibits human mcf-7 mammary cancer cell mitotic progression and tubulin polymerization. J Nutr 134(9):2229–2236

    PubMed  CAS  Google Scholar 

  • Johansson NL, Pavia CS, Chiao JW (2008) Growth inhibition of a spectrum of bacterial and fungal pathogens by sulforaphane, an isothiocyanate product found in broccoli and other cruciferous vegetables. Planta Med 74(7):747–750

    PubMed  CAS  Google Scholar 

  • Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64(9):1105–1127

    PubMed  CAS  Google Scholar 

  • Kallio H, Raimoaho P, Virtalaine T (1999) Emission of blanched broccoli volatiles in headspace during cooking. In: Shahidi F, Ho CT (eds) Flavor chemistry of ethnic foods. Springer, New York, pp 111–117

    Google Scholar 

  • Kalpana DPD, Gayathri R, Gunassekaran G, Murugan S, Sakthisekaran D (2011) Chemopreventive role of sulforaphane by upholding the GSH redox cycle in pre- and post-initiation phases of experimental lung carcinogenesis. Asian Pac J Cancer Prev 12(1):103–110

    Google Scholar 

  • Kalpana DPD, Gayathri R, Gunassekaran GR, Murugan S, Sakthisekaran D (2013) Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis. Pharm Biol 51(5):621–628

    Google Scholar 

  • Kassie F, Uhl M, Rabot S, Grasl-Kraupp B, Verkerk R, Kundi M, Chabicovsky M, Schulte-Hermann R, Knasmüller S (2003) Chemoprevention of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen. Carcinogenesis 24(2):255–261

    PubMed  CAS  Google Scholar 

  • Kaur C, Kumar K, Anil D, Kapoor HC (2007) Variations in antioxidant activity in broccoli (Brassica oleracea L.) cultivars. J Food Biochem 31:21–638

    Google Scholar 

  • Keck AS, Finley JW (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 3(1):5–12

    PubMed  CAS  Google Scholar 

  • Khachik F, Beecher GR, Whittaker NF (1986) Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J Agric Food Chem 34(4):603–616

    CAS  Google Scholar 

  • Khachik F, Beccher GR, Goli MB (1991) Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure Appl Chem 63(1):71–80

    CAS  Google Scholar 

  • Kieber JJ, Lopez MF, Tissier AF, Signer E (1992) Purification and properties of DNA topoisomerase I from broccoli. Plant Mol Biol 18(5):865–871

    PubMed  CAS  Google Scholar 

  • Kirsh VA, Peters U, Mayne ST, Subar AF, Chatterjee N, Johnson CC, Hayes RB (2007) Prostate, lung, colorectal and ovarian cancer screening trial. Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 99(15):1200–1209

    PubMed  Google Scholar 

  • Krumbein A, Kläring HP, Schonhof I, Schreiner M (2010) Atmospheric carbon dioxide changes photochemical activity, soluble sugars and volatile levels in broccoli (Brassica oleracea var. italica). J Agric Food Chem 58(6):3747–3752

    PubMed  CAS  Google Scholar 

  • Kurilich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA (1999) Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 47(4):1576–1581

    PubMed  CAS  Google Scholar 

  • Kurilich AC, Jeffery EH, Juvik JA, Wallig MA, Klein BP (2002) Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. J Agric Food Chem 50(18):5053–5057

    PubMed  CAS  Google Scholar 

  • Kurilich AC, Jeffery EH, Juvik JA, Wallig MA, Klein BP (2003) Broccoli extracts protect against reactive oxygen species in HepG2 cells. J Nutraceut Funct Med Food 4(2):5–16

    Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variations of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47(4):1541–1548

    PubMed  CAS  Google Scholar 

  • Lee ISL, Boyce MC, Breadmore MC (2011) A rapid quantitative determination of phenolic acids in Brassica oleracea by capillary zone electrophoresis. Food Chem 127(2):797–801

    PubMed  CAS  Google Scholar 

  • Lee JG, Kwak JH, Um YC, Lee SG, Jang YA, Choi CS (2012) Variation of glucosinolate contents among domestic broccoli (Brassica oleracea L. var. italica) accessions. Korean J Hortic Sci Technol 30(6):743–750

    CAS  Google Scholar 

  • Lelario F, Bianco G, Bufo SA, Cataldi TRI (2012) Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 73:74–83

    PubMed  CAS  Google Scholar 

  • Lemoine ML, Chaves AR, Martínez GA (2010) Influence of combined hot air and UV-C treatment on the antioxidant system of minimally processed broccoli (Brassica oleracea L. var. italica). LWT Food Sci Technol 43(9):1313–1319

    CAS  Google Scholar 

  • Liberty Hyde Bailey Hortorium (1976) Hortus third. A concise dictionary of plants cultivated in the United States and Canada. Liberty Hyde Bailey Hortorium/Cornell University/Wiley, New York, 1312 pp

    Google Scholar 

  • López-Berenguer C, Carvajal M, Moreno DA, García-Viguera C (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 55(24):10001–10007

    PubMed  Google Scholar 

  • Lyi SM, Zhou X, Kochian LV, Li L (2007) Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochemistry 68(8):1112–1119

    PubMed  CAS  Google Scholar 

  • Mahn A, Reyes A (2012) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18(6):503–514

    PubMed  Google Scholar 

  • Maldini M, Baima S, Morelli G, Scaccini C, Natella F (2012) A liquid chromatography-mass spectrometry approach to study “glucosinoloma” in broccoli sprouts. J Mass Spectrom 47(9):1198–1206

    PubMed  CAS  Google Scholar 

  • Manesh C, Kuttan G (2003) Effect of naturally occurring isothiocyanates on the immune system. Immunopharmacol Immunotoxicol 25(3):451–459

    PubMed  CAS  Google Scholar 

  • Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K, Vidal-Valverde C (2008) Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol 46(5):1635–1644

    PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RKY, Rowan DD (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152

    PubMed  CAS  Google Scholar 

  • Matusheski NV, Wallig MA, Juvik JA, Klein BP, Kushad MM, Jeffery EH (2001) Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea. J Agric Food Chem 49(4):1867–1872

    PubMed  CAS  Google Scholar 

  • Meng Q, Goldberg ID, Rosen EM, Fan S (2000) Inhibitory effects of Indole-3-carbinol on invasion and migration in human breast cancer cells. Breast Cancer Res Treat 63(2):147–152

    PubMed  CAS  Google Scholar 

  • Michnovicz JJ, Adlercreutz H, Bradlow HL (1997) Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst 89(10):718–723

    PubMed  CAS  Google Scholar 

  • Misiewicz I, Skupinska K, Kasprzycka-Guttman T (2003) Sulforaphane and 2-oxohexyl isothiocyanate induce cell growth arrest and apoptosis in L-1210 leukemia and ME-18 melanoma cells. Oncol Rep 10(6):2045–2050

    PubMed  CAS  Google Scholar 

  • Moco S, Vervoort J (2012) Chemical identification strategies using liquid chromatography-photodiode array-solid-phase extraction-nuclear magnetic resonance/mass spectrometry. Methods Mol Biol 860:287–316

    PubMed  CAS  Google Scholar 

  • Moon DO, Kim MO, Kang SH, Choi YH, Kim GY (2009) Sulforaphane suppresses TNF-alpha-mediated activation of NF-kappaB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett 274(1):132–142

    PubMed  CAS  Google Scholar 

  • Moreno DA, Carvajal M, López-Berenguer C, García-Viguera C (2006) Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41(5):1508–1522

    PubMed  CAS  Google Scholar 

  • Moreno DA, López-Berenguer C, García-Viguera C (2007) Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. J Food Sci 72(1):S064–S068

    PubMed  Google Scholar 

  • Moreno DA, Perez-Balibrea S, Ferreres F, Gil-Izquierdo A, Garcia-Viguera C (2010) Acylated anthocyanins in broccoli sprouts. Food Chem 123(2):358–363

    CAS  Google Scholar 

  • Motawea H, Hashem FA, El-Shabrawi AE, El-Sherbiny SM (2010) Brassica oleracea L.var. italica: a nutritional supplement for weight loss. Aust J Med Herbal 22(4):127–131

    Google Scholar 

  • Mueller K, Bklum NM, Mueller AS (2013) Examination of the anti-inflammatory, antioxidant, and xenobiotic-inducing potential of broccoli extract and various essential oils during a mild DSS-induced colitis in rats. ISRN Gastroenterol 2013: article ID 710856

    Google Scholar 

  • Munyaka AW, Oey I, Verlinde P, Loey AV, Hendrickx M (2009) Acidification, crushing and thermal treatments can influence the profile and stability of folate poly-γ-glutamates in broccoli (Brassica oleracea L. var. italica). Food Chem 117(3):568–575

    CAS  Google Scholar 

  • Munyaka AW, Verlinde P, Mukisa IM, Oey I, Van Loey A, Hendrickx M (2010) Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum). J Agric Food Chem 58(7):4230–4240

    PubMed  CAS  Google Scholar 

  • Murashima M, Watanabe S, Zhuo XG, Uehara M, Kurashige A (2004) Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. Biofactors 22(1–4):271–275

    PubMed  CAS  Google Scholar 

  • Myzak MC, Tong P, Dashwood WM, Dashwood RH (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232(2):227–234

    CAS  Google Scholar 

  • Naguib AE-MM, El-Baz FK, Salama ZA, Hanaa HAEB, Ali HF, Gaafar AA (2012) Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica oleracea, var. italica) as antioxidants in response to organic and bio-organic fertilizers. J Saudi Soc Agric Sci 11(2):35–142

    Google Scholar 

  • Nestle M (1997) Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: clinical, dietary, and policy implications. Proc Natl Acad Sci USA 94(21):11149–11151

    PubMed Central  PubMed  CAS  Google Scholar 

  • Noyan-Ashraf MH, Sadeghinejad Z, Juurlink BH (2005) Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci 8(2):101–110

    PubMed  CAS  Google Scholar 

  • Pereira FM, Rosa E, Fahey JW, Stephenson KK, Carvalho R, Aires A (2002) Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J Agric Food Chem 50(21):6239–6244

    PubMed  CAS  Google Scholar 

  • Pérez-Balibrea S, Moreno DA, García-Viguera C (2008) Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric 88:904–910

    Google Scholar 

  • Pérez-Balibrea S, Moreno DA, García-Viguera C (2010) Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination. J Food Sci 75(8):C673–C677

    PubMed  Google Scholar 

  • Pérez-Balibrea S, Moreno DA, García-Viguera C (2011) Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem 125(2):348–354

    Google Scholar 

  • Plumb GW, Price KR, Modes MJ, Williamson G (1997) Antioxidant properties of the major polyphenolic compounds in broccoli. Free Radic Res 27(4):429–435

    PubMed  CAS  Google Scholar 

  • Porcher MH et al (1995–2020) Searchable world wide web multilingual multiscript plant name database. Published by The University of Melbourne, Melbourne. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html

  • Price KR, Casuscelli F, Colquhoun IJ, Rhodes MJC (1998) Composition and content of flavonol glycosides in broccoli florets (Brassica olearacea) and their fate during cooking. J Sci Food Agric 77:468–472

    CAS  Google Scholar 

  • Rampal G, Thind TS, Vig AP, Arora S (2010) Antimutagenic potential of glucosinolate-rich seed extracts of broccoli (Brassica oleracea L var italica Plenck). Int J Toxicol 29(6):616–624

    PubMed  CAS  Google Scholar 

  • Rangkadilok N, Nicolas ME, Bennett RN, Premier RR, Eagling DR, Taylor PWJ (2002a) Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Sci Hortic 96(1–4):11–26

    CAS  Google Scholar 

  • Rangkadilok N, Tomkins B, Nicolas ME, Premier RR, Bennett RN, Eagling DR, Taylor PW (2002b) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50(25):7386–7391

    PubMed  CAS  Google Scholar 

  • Rodríguez-Cantú LN, Gutiérrez-Uribe JA, Arriola-Vucovich J, Díaz-De La Garza RI, Fahey JW, Serna-Saldivar SO (2011) Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J Agric Food Chem 59(4):1095–1103

    PubMed  Google Scholar 

  • Rodríguez-Hernández MDC, Moreno DA, Carvajal M, García-Viguera C, Martínez-Ballesta MDC (2012) Natural antioxidants in purple sprouting broccoli under Mediterranean climate. J Food Sci 77(10):C1058–C1063

    Google Scholar 

  • Rosa EAS, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. HortSci 36(1):56–59

    CAS  Google Scholar 

  • Rose P, Huang Q, Ong CN, Whiteman M (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209(2):105–113

    PubMed  CAS  Google Scholar 

  • Rossano R, Larocca M, Riccio P (2011) 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence. J Plant Physiol 168(13):1517–1525

    PubMed  CAS  Google Scholar 

  • Roy MK, Juneja LR, Isobe S, Tsushida T (2009) Steam processed broccoli (Brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems. Food Chem 114(1):263–269

    CAS  Google Scholar 

  • Rychlik M, Adam ST (2008) Glucosinolate and folate content in sprouted broccoli seeds. Eur Food Res Technol 226(5):1057–1064

    CAS  Google Scholar 

  • Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48(1):25–33

    PubMed  CAS  Google Scholar 

  • Schonhof I, Kläring HP, Krumbein A, Schreiner M (2007) Interaction between atmospheric CO2 and glucosinolates in broccoli. J Chem Ecol 33(1):105–114

    PubMed  CAS  Google Scholar 

  • Schreiner M, Peters P, Krumbein A (2007) Changes of glucosinolates in mixed fresh-cut broccoli and cauliflower florets in modified atmosphere packaging. J Food Sci 72(8):S585–S589

    PubMed  CAS  Google Scholar 

  • Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomark Prev 10(5):501–508

    CAS  Google Scholar 

  • Singh J, Upadhyay AK, Prasad K, Bahadur A, Rai M (2007) Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J Food Compos Anal 20(2):106–112

    CAS  Google Scholar 

  • Spadone JC, Matthey-Doret W, Blank I (2006) Formation of methyl (methylthio) methyl disulfide in broccoli Brassica oleracea L. var. italica. Dev Food Sci 43:309–314

    CAS  Google Scholar 

  • Staretz ME, Koenig L, Hecht SS (1997) Effects of long term phenethyl isothiocyanate treatment on microsomal metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F344 rats. Carcinogenesis 8(9):1715–1722

    Google Scholar 

  • Stoewsand GS (1995) Bioactive organosulfur phytochemicals in Brassica oleracea vegetables – a review. Food Chem Toxicol 33(6):537–543

    PubMed  CAS  Google Scholar 

  • Survay NS, Kumar B, Upadhyaya CP, Ko E, Lee C, Choi JN, Yoon DY, Jung YS, Park SW (2010) Characterization of a cinnamoyl derivative from broccoli (Brassica oleracea L. var. italica) florets. Fitoterapia 81(8):1062–1066

    PubMed  CAS  Google Scholar 

  • Survay NS, Kumar B, Jang M, Yoon DY, Jung YS, Yang DC, Park SW (2012) Two novel bioactive glucosinolates from broccoli (Brassica oleracea L. var. italica) florets. Bioorgan Med Chem Lett 22(17):5555–5558

    CAS  Google Scholar 

  • Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y (1995) Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 82–83:173–179

    PubMed  Google Scholar 

  • Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C, Dinkova-Kostova AT (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104(44):17500–17505

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thejass P, Kuttan G (2007a) Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomedicine 14(7–8):538–545

    PubMed  CAS  Google Scholar 

  • Thejass P, Kuttan G (2007b) Modulation of cell-mediated immune response in B16F-10 melanoma-induced metastatic tumor-bearing C57BL/6 mice by sulforaphane. Immunopharmacol Immunotoxicol 29(2):173–186

    PubMed  CAS  Google Scholar 

  • Thongsook T, Barrett DM (2005) Purification and partial characterization of broccoli (Brassica oleracea var. italica) peroxidases. J Agric Food Chem 53(8):3206–3214

    PubMed  CAS  Google Scholar 

  • Tian Q, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 343(1):93–99

    PubMed  CAS  Google Scholar 

  • Tjeertes P (2004) Brassica oleracea L. (cauliflower and broccoli) [Internet] Record from PROTA4U. In: Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa//Ressources végétales de l’Afrique tropicale), Wageningen. http://www.prota4u.org/search.asp. Accessed 23 Nov 2012

  • Totušek J, Tříska J, Lefnerová D, Strohalm J, Vrchotová N, Zendulka O, Průchova J, Chaloupková J, Novotná P, Houška M (2011) Contents of sulforaphane and total isothiocyanates, antimutagenic activity, and inhibition of clastogenicity in pulp juices from Cruciferous plants. Czech J Food Sci 29(5):548–556

    Google Scholar 

  • Ukai K, Sekiya J (1999) Rapid purification and characterization of cystine lyase b from broccoli inflorescence. Phytochemistry 51(7):853–859

    CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA national nutrient database for standard reference, release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Vallejo F, Tomás-Barberán F, Benavente-García AG, García-Viguera C (2003a) Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agric 83(4):307–313

    CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, García-Viguera C (2003b) Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51(10):3029–3034

    PubMed  CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, García-Viguera C (2003c) Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J Sci Food Agric 83(14):1511–1516

    CAS  Google Scholar 

  • Vallejo F, Gil-Izquierdo A, Pérez-Vicente A, García-Viguera C (2004a) In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. J Agric Food Chem 52(1):135–138

    PubMed  CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, Ferreres F (2004b) Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. J Chromatogr A 1054(1–2):181–193

    PubMed  CAS  Google Scholar 

  • Van der Vossen HAM (1994) Brassica oleracea L. cv. groups Cauliflower & Broccoli. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia, no 8 Vegetables. Prosea Foundation, Bogor, pp 111–115

    Google Scholar 

  • Vasanthi HR, Mukherjee S, Das DK (2009) Potential health benefits of broccoli- a chemico-biological overview. Mini Rev Med Chem 9(6):749–759

    PubMed  CAS  Google Scholar 

  • Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, Van den Brandt PA (1996) Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5(2):733–748

    CAS  Google Scholar 

  • Vibin M, Siva Priya SG, Rooban BN, Sasikala V, Sahasranamam V, Abraham A (2010) Broccoli regulates protein alterations and cataractogenesis in selenite models. Curr Eye Res 35(2):99–107

    PubMed  CAS  Google Scholar 

  • Visanji JM, Duthie SJ, Pirie L, Thompson DG, Padfield PJ (2004) Dietary isothiocyanates inhibit Caco-2 cell proliferation and induce G2/M phase cell cycle arrest, DNA damage, and G2/M checkpoint activation. J Nutr 134:3121–3126

    PubMed  CAS  Google Scholar 

  • Walaszek Z, Szemraj J, Narog M, Adams AK, Kilgore J, Sherman U, Hanausek M (1997) Metabolism, uptake, and excretion of a D-glucaric acid salt and its potential use in cancer prevention. Cancer Detect Prev 21(2):178–190

    PubMed  CAS  Google Scholar 

  • Wang GC, Farnham M, Jeffery EH (2012a) Impact of thermal processing on sulforaphane yield from broccoli (Brassica oleracea L. ssp. italica). J Agric Food Chem 60(27):6743–6748

    PubMed  CAS  Google Scholar 

  • Wang JS, Gu HH, Yu HF, Zhao ZQ, Sheng XG, Zhang XH (2012b) Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 133(3):735–741

    CAS  Google Scholar 

  • Wang M, Chen S, Wang S, Sun D, Chen J, Li Y, Han W, Yang X, Gao HQ (2012c) Effects of phytochemicals sulforaphane on uridine diphosphate-glucuronosyltransferase expression as well as cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. Chin J Physiol 55(2):134–144

    PubMed  CAS  Google Scholar 

  • Winkler S, Faragher J, Franz P, Insic M, Jones R (2007) Glucoraphanin and flavonoid levels remain stable during simulated transport and marketing of broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol 43(1):89–94

    CAS  Google Scholar 

  • Wu L, Noyan Ashraf MH, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101(18):7094–7099

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu CC, Chuang HY, Lin CY, Chen YJ, Tsai WH, Fang CY, Huang SY, Chuang FY, Lin SF, Chang Y, Chen JY (2012) Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog. doi:10.1002/mc.21926

    Google Scholar 

  • Xu CJ, Guo DP, Yuan J, Yuan GF, Wang QM (2006) Changes in glucoraphanin content and quinone reductase activity in broccoli (Brassica oleracea var. italica) florets during cooling and controlled atmosphere storage. Postharvest Biol Technol 42(2):176–184

    CAS  Google Scholar 

  • Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, Tauchi M, Suzuki H, Hyodo I, Yamamoto M (2009) Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori–infected mice and humans. Cancer Prev Res (Phila) 2(4):353–360

    CAS  Google Scholar 

  • Yochum L, Kushi LH, Meyer K, Folsom AR (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women American. J Epidemiol 149:943–949

    CAS  Google Scholar 

  • Zeng H, Wu M, Botnen JH (2009) Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes. J Nutr 139(9):1613–1618

    PubMed  CAS  Google Scholar 

  • Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54(7 Suppl):1976s–1981s

    PubMed  CAS  Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89(6):2399–2403

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91(8):3147–3150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang J, Hsu BAJC, Kinseth BAMA, Bjeldanes LF, Firestone GL (2003) Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specific antigen production in human LNCaP prostate carcinoma cells. Cancer 98(11):2511–2520

    PubMed  CAS  Google Scholar 

  • Zhang Y, Munday R, Jobson HE, Munday CM, Lister C, Wilson P, Fahey JW, Mhawech-Fauceglia P (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54(25):9370–9376

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2014). Brassica oleracea (Italica Group). In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7395-0_39

Download citation

Publish with us

Policies and ethics