Skip to main content

Derivation and Expansion of Human Embryonic Stem Cells Under Xeno-Free, Defined Conditions

  • Chapter
  • First Online:
  • 1289 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 11))

Abstract

Human embryonic stem cells (hESCs) hold great promise in regenerative medicine and cell therapy due to their unique properties: unlimited self-renewal and the pluripotency to differentiate into all cell lineages in the body. However, the overwhelming majority of currently available hESC lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation, propagation, and cryopreservation. The use of animal-derived components would prevent the use of hESCs for clinical purposes, due to the possibility of xenogeneic bimolecule and pathogen contamination. Therefore, the establishment of clinical-grade hESC lines in xeno-free, chemically defined conditions is the first and key step. In this chapter, we review and summarize the history and current state of derivation, propagation and expansion of hESCs in static and suspension cultures in xeno-free, defined conditions. The main part of this review focuses on the recent advances in the generation and expansion of hESCs in xeno-free, chemically defined conditions. Based on previous studies, we also put forward the possible means for deriving and expanding hESC lines in xeno-free, defined conditions under current good manufacturing process (cGMP) standards that will enable the generation of clinical-grade hESC lines for the clinical purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18:831–851 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6:248–259

    Article  PubMed  Google Scholar 

  • Bajpai R, Lesperance J, Kim M, Terskikh AV (2008) Efficient propagation of single cells accutase-dissociated human embryonic stem cells. Mol Reprod Dev 75:818–827

    Article  PubMed  CAS  Google Scholar 

  • Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz Gerald C, Zhang K, Melton DA, Eggan K (2009) Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–106

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117

    Article  PubMed  CAS  Google Scholar 

  • Ellerström C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176

    Article  PubMed  Google Scholar 

  • Ellerström C, Hyllner J, Strehl R (2010) Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. Methods Mol Biol 584:121–134

    Article  PubMed  Google Scholar 

  • Gavrilov S, Papaioannou VE, Landry DW (2009) Alternative strategies for the derivation of human embryonic stem cell lines and the role of dead embryos. Curr Stem Cell Res Ther 4:81–86

    Article  PubMed  CAS  Google Scholar 

  • Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, McKay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258

    Article  PubMed  Google Scholar 

  • Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485

    Article  PubMed  CAS  Google Scholar 

  • Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16:573–582

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91:688–698

    Article  PubMed  CAS  Google Scholar 

  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    Article  PubMed  CAS  Google Scholar 

  • Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28:606–610

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Liu S, Li X, Krawetz R, Rancourt DE (2010) Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol 88:479–490

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Liu S, Rancourt DE (2012) Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 21:2036–2048 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230

    Article  PubMed  CAS  Google Scholar 

  • Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32

    Article  PubMed  CAS  Google Scholar 

  • Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkelä E, Aalto-Setälä K, Otonkoski T, Suuronen R, Hovatta O, Skottman H (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic induced pluripotent and adipose stem cells. PLoS One 5:e10246

    Article  PubMed  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez CI, Galán A, Valbuena D, Simón C (2006) Derivation of clinical grade human embryonic stem cells. Reprod Biomed Online 12:112–118

    Article  PubMed  Google Scholar 

  • Simón C, Escobedo C, Valbuena D, Genbacev O, Galan A, Krtolica A, Asensi A, Sánchez E, Esplugues J, Fisher S, Pellicer A (2005) First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal-free conditions. Fertil Steril 83:246–249

    Article  PubMed  Google Scholar 

  • Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4:165–179

    Article  PubMed  CAS  Google Scholar 

  • Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28:361–364

    Article  PubMed  CAS  Google Scholar 

  • Ström S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, Blennow E, Hovatta O (2007) Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22:3051–3058

    Article  PubMed  Google Scholar 

  • Suss-Toby E, Gerecht-Nir S, Amit M, Manor D, Itskovitz- Eldor J (2004) Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum Reprod 19:670–675

    Article  PubMed  Google Scholar 

  • Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zengm X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 4:e6233

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Vemuri MC, Schimmel T, Colls P, Munne S, Cohen J (2007) Derivation of human embryonic stem cells in xeno-free conditions. Methods Mol Biol 407:1–10

    Article  PubMed  CAS  Google Scholar 

  • Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick Rancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meng, G., Rancourt, D. (2014). Derivation and Expansion of Human Embryonic Stem Cells Under Xeno-Free, Defined Conditions. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7329-5_3

Download citation

Publish with us

Policies and ethics