Skip to main content

An Argument for Axion Dark Matter

  • Conference paper
  • First Online:
Sources and Detection of Dark Matter and Dark Energy in the Universe

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 148))

Abstract

An argument is presented that the dark matter is axions, at least in part. It has three steps. First, axions behave differently from the other forms of cold dark matter because they form a rethermalizing Bose-Einstein condensate (BEC). Second, there is a tool to distinguish axion BEC from the other dark matter candidates on the basis of observation, namely the study of the inner caustics of galactic halos. Third, the observational evidence for caustic rings of dark matter is consistent in every aspect with axion BEC, but not with the other proposed forms of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sikivie, P., Yang, Q.: Bose-Einstein condensation of dark matter axions. Phys. Rev. Lett. 103, 111301 (2009)

    Article  ADS  Google Scholar 

  2. Erken, O., Sikivie, P., Tam, H., Yang, Q.: Cosmic axion thermalization. Phys. Rev. D85, 063520 (2012)

    ADS  Google Scholar 

  3. Sikivie, P.: Phys. Lett. B432, 139 (1998); Phys. Rev. D60, 063501 (1999)

    Google Scholar 

  4. Natarajan, A., Sikivie, P.: The inner caustics of cold dark matter halos. Phys. Rev. D73, 023510 (2006)

    ADS  Google Scholar 

  5. Duffy, L.D., Sikivie, P.: The Caustic Ring model of the Milky Way halo. Phys. Rev. D78, 063508 (2008)

    ADS  Google Scholar 

  6. Sikivie, P., Tkachev, I., Wang, Y.: Phys. Rev. Lett. 75, 2911 (1995); Phys. Rev. D56, 1863 (1997)

    Google Scholar 

  7. Fillmore, J.A., Goldreich, P.: Astrophys. J. 281, 1 (1984); Bertschinger, E.: Astrophys. J. Suppl. 58, 39 (1985)

    Google Scholar 

  8. Sikivie, P.: Phys. Lett. B695, 22 (2011)

    Article  ADS  Google Scholar 

  9. Efstathiou, G., Jones, B.J.T.: Mon. Not. R. Astron. Soc. 186, 133 (1979); Barnes, J., Efstathiou, G.: Astrophys. J. 319, 575(1987); Cervantes-Sodi, B., et al.: Rev. Mex. Astron. Astrofis. 34, 87 (2008)

    Google Scholar 

  10. Sikivie, P.: An argument that the dark matter is axions. arXiv:1210.0040. To appear in the Proceedings of the 24th Rencontres de Blois on Particle Physics and Cosmology, Blois, France, 27 May–1 June 2012

    Google Scholar 

  11. Peccei, R.D., Quinn, H.: Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D16, 1791 (1977); Weinberg, S.: Phys. Rev. Lett. 40, 223 (1978); Wilczek, F.: Phys. Rev. Lett. 40, 279 (1978)

    Google Scholar 

  12. For a recent discussion of a broad class of axion-like particles, see: Arias, P., et al.: J. Cosmol. Astropart. Phys. 06, 013 (2012)

    Google Scholar 

  13. Asztalos, S.J., et al.: Phys. Rev. Lett. 104, 041301 (2010), and references therein

    Google Scholar 

  14. Aune, S., et al.: Phys. Rev. Lett. 107, 261302 (2011); Ohta, R., et al.: Nucl. Instrum. Methods A670, 73 (2012)

    Google Scholar 

  15. Ehret, K., et al.: Phys. Lett. B689, 149 (2010); Mueller, G., et al.: Phys. Rev. D80, 072004 (2009), and references therein

    Google Scholar 

  16. Sin, S.-J.: Phys. Rev. D50, 3650 (1994); Goodman, J.: New Astron. Rev. 5, 103 (2000); Hu, W., Barkana, R., Gruzinov, A.: Phys. Rev. Lett. 85, 1158 (2000); Mielke, E.W., Vélez Pérez, J.A.: Phys. Lett. B671, 174 (2009); Lee, J.-W., Lim, S.: J. Cosmol. Astropart. Phys. 1001, 007 (2010); Lundgren, A., Bondarescu, M., Bondarescu, R., Balakrishna, J.: Astrophys. J. 715, L35 (2010); Marsh, D.J., Ferreira, P.G.: Phys. Rev. D82, 103528 (2010); Lora, V., et al.: J. Cosmol. Astropart. Phys. 02, 011 (2012)

    Google Scholar 

  17. Rindler-Daller, T., Shapiro, P.: Mon. Not. R. Astron. Soc. 422, 135 (2012), and references therein

    Google Scholar 

  18. Bianchi, M., Grasso, D., Ruffini, R.: Jeans mass of a cosmological coherent scalar field. Astron. Astrophys. 231, 301 (1990)

    ADS  Google Scholar 

  19. Chavanis, P.-H.: Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter. Astrophys. J. 537, A127 (2012)

    Google Scholar 

  20. Navarro, J.F., Benz, W.: Astrophys. J. 380, 320 (1991); White, S.D.M., Navarro, J.F.: Mon. Not. R. Astron. Soc. 265, 271 (1993); Navarro, J.F., Steinmetz, M.: Astrophys. J. 513, 555 (1999)

    Google Scholar 

Download references

Acknowledgements

 I would like to thank the Aspen Center for Physics for its support (NSF Grant #1066293) and its hospitality while working on this paper. This work was supported in part by the U.S. Department of Energy under grant DE-FG02-97ER41209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sikivie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sikivie, P. (2013). An Argument for Axion Dark Matter. In: Cline, D. (eds) Sources and Detection of Dark Matter and Dark Energy in the Universe. Springer Proceedings in Physics, vol 148. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7241-0_3

Download citation

Publish with us

Policies and ethics