Skip to main content

Resistance to Castration – Resistance to Drugs

  • Chapter
  • First Online:
  • 1143 Accesses

Abstract

Up to 70 % of newly diagnosed patients with advanced prostate cancer (PCa) will progress to castration-resistant prostate cancer (CRPC) and, in most cases (from 50 to 70 %), will develop hematogenous bone metastasis. Once PCa cells spread to the skeleton, cancer-related death becomes inevitable, with a death burden of more than 28,000 cases in 2012, in the United States (Semenas et al, Curr Drug Target, 13(10):1308–1323, 2012).

To date, therapeutic regimens are unable to revert this fatal progression (Semenas et al, Curr Drug Target, 13(10):1308–1323, 2012).

Thus, PCa bone metastatic prostate cancer still represents a major clinical challenge.

Prostate cancer biology is tightly linked to AR, which regulates epithelial proliferation and suppresses apoptosis both in normal and in cancer prostate tissue, and is involved in the progression of the disease toward a castration-resistant state (Hodgson et al, World J Urol, 30(3):279–285, 2012). Our knowledge of the molecular mechanisms, responsible for the acquired resistance to ADT in prostate cancer, has exponentially progressed during the last years. For instance, we have recently learnt that it may be associated with the occurrence of AR splicing variants (Hu et al. 2011).

Surgical castration has shown to induce regression of advanced disease 40-years before the cloning of androgen receptor (AR) (Huggins et al, Arch Surg, 43:209–223, 1941; Lubahn et al, Science, 240:327–330, 1988).

Since then, hormonal therapy was held over as the main available therapeutic option for aggressive prostate cancers. In the last decade, however, chemotherapy was introduced to targeting the epithelium of metastatic, hormone-resistant prostate cancer (Pinto et al, Tumour Biol, 33(2):421–426, 2012; Hodgson et al, World J Urol, 30(3):279–285, 2012). The cytotoxic conventional drug Docetaxel was approved by the Food and Drug Administration in 2004, and still represents the standard first-line treatment for patients with castration-resistant prostate cancer (CRPC) (Sartor et al, Oncologist, 16(11):1487–1497, 2011). It produces sensible palliative effects on bone-metastasis-related symptoms, but prolongs only modestly the survival of patients (Hodgson et al, World J Urol, 30(3):279–285, 2012; Tannock et al, N Engl J Med, 351:1502–1512, 2004; Petrylak et al, N Engl J Med, 351:1513–1520, 2004). Docetaxel acts mainly by inducing apoptosis of target epithelial cells. The common intrinsic defects of mCRPC in apoptosis pathways, such as BCL-2 overexpression and/or phosphatase and tensin homolog (PTEN) loss (Mathew, Dipaola, J Urol, 178:S36–S41, 2007; Galsky, Vogelzang, Ann Oncol, 21:2135–2144, 2010), may constitute the rationale of the unsatisfactory rate of cure attributable to this drug (Srigley et al, Histopathology, 60(1):153–165, 2012). In recent years, similar effects on survival have been demonstrated also for several other chemotherapeutic agents, such as mitoxantrone, etoposide, cisplatinum, vinblastine–estramustine and taclitaxel.

Following progression after treatment with docetaxel, new cabazitaxel (XRP6258)-prednisone treatment regimens have led to a significantly longer overall survival, and other novel agents are currently being evaluated, including the cell-based immunotherapy sipuleucel-T, the androgen biosynthesis inhibitors abiraterone acetate and MDV3100, the chemotherapic Cabazitaxel, as well as the radionuclide alpharadin/Radium 223 (bone microenvironment targeting agents) (Sartor et al, Oncologist, 16(11):1487–1497, 2011; Liu et al, Front Endocrinol (Lausanne), 3:72, 2012; Antonarakis, Armstrong, Prostate Cancer Prostatic Dis, 14(3):206–218, 2011). To date, they seem to offer a survival advantage to patients, and look promising to improve the prognosis of metastatic CRPC.

However, the real clinical benefit of these systemic therapies remains still transient, probably due also to the well-known clonal heterogeneity of advanced prostate cancers, and the overall survival of patients that holds frustratingly steady.

The high cost of these therapies and the increasing complexity of clinical decision making, further underscore the need to multiply the efforts to develop more potent chemotherapy agents and/or novel AR/inhibitors agents that may better overcome resistance mechanisms to existing therapies (Liu et al, Front Endocrinol (Lausanne), 2012; Hodgson et al, World J Urol, 30(3):279–285, 2012; Armstrong, George, Urol Oncol, 26:430–437, 2008; Schrijvers et al, Adv Ther, 27:285–296, 2010).

Several recently developed drug candidates, directed against the metastatic cancer microenvironments or niches, show promising results in this direction (Hodgson et al, World J Urol, 30(3):279–285, 2012).

The efficacy of the standard-of-care therapeutic intervention directed to mCRPC will be greatly improved by our increasing understanding of molecular mechanisms of the acquired resistance to ADT and chemotherapy, which is expected to provide valuable insights also to new unfailing biomarkers of resistance, therapeutic response and disease progression of prostate cancer, allowing us to personalize the therapy for the single patients with mCRPC (Liu et al, Front Endocrinol (Lausanne), 3:72, 2012; Antonarakis and Armstrong, Prostate Cancer Prostatic Dis, 14(3):206–218, 2011).

The knowledge of the molecular mechanisms underpinning prostate cancer progression is changing dramatically our therapeutic approach to its advanced, metastasizing phase, opening up the chance to design and develop novel agents targeting the multiple pathways responsible for the lethal cancer phenotype, in a more efficient and safer manner (Corcoran and Gleave, Histopathology, 60(1): 216–231, 2012).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal N, Sonpavde G, Sternberg CN (2012) Novel molecular targets for the therapy of castration-resistant prostate cancer. Eur Urol 61(5):950–960. Epub 2011 Dec 22

    Article  PubMed  CAS  Google Scholar 

  • Antolín AR, Ojeda JM, Otero JR, Rodríguez AC, Castellano D, Esteban MD, Sicilia LD, González RD (2012) Hormonal treatment in biochemical recurrence after radical prostatectomy. Arch Esp Urol 65(1):111–121. Review. Spanish

    PubMed  Google Scholar 

  • Antonarakis ES, Armstrong AJ (2011) Emerging therapeutic approaches in the management of metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 14(3):206–218. Epub 2011 May 17. Review

    Article  PubMed  CAS  Google Scholar 

  • Araujo J, Logothetis C (2010) Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36:492–500

    Article  PubMed  CAS  Google Scholar 

  • Armas OA, Aprikian AG, Melamed J et al (1994) Clinical and pathological effects of neoadjuvant total androgen ablation therapy on clinically localized prostatic adenocarcinoma. Am J Surg Pathol 18:979–991

    Article  PubMed  CAS  Google Scholar 

  • Armstrong AJ, George DJ (2008) New drug development in metastatic prostate cancer. Urol Oncol 26:430–437

    Article  PubMed  CAS  Google Scholar 

  • Batist G (2007) Cardiac safety of liposomal anthracyclines. Cardiovasc Toxicol 7:72–74

    Article  PubMed  CAS  Google Scholar 

  • Beekman KW, Hussain M (2008) Hormonal approaches in prostate cancer: application in the contemporary prostate cancer patient. Urol Oncol 26(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Beer TM, Garzotto M, Henner WD, Eilers KM, Wersinger EM (2004) Multiple cycles of intermittent chemotherapy in metastatic androgen-independent prostate cancer. Br J Cancer 91:1425–1427

    PubMed  CAS  Google Scholar 

  • Berthold DR, Sternberg CN, Tannock IF (2005) Management of advanced prostate cancer after first-line chemotherapy. J Clin Oncol 23:8247–8252

    Article  PubMed  CAS  Google Scholar 

  • Bradley DA, Hussain M (2008) Promising novel cytotoxic agents and combinations in metastatic prostate cancer. Cancer J 14(1):15–19. Review

    Article  PubMed  CAS  Google Scholar 

  • Bullock MJ, Srigley JR, Klotz LH et al (2002) Pathologic effects of neoadjuvant cyproterone acetate on nonneoplastic prostate, prostatic intraepithelial neoplasia, and adenocarcinoma. A detailed analysis of radical prostatectomy specimens from a randomized trial. Am J Surg Pathol 26:1400–1413

    Article  PubMed  Google Scholar 

  • Carducci MA, Saad F, Abrahamsson PA et al (2007) A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Chi KN, Zoubeidi A, Gleave ME (2008) Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opin Investig Drug 17:1955–1962

    Article  CAS  Google Scholar 

  • Chodak G, Sharifi R, Kasimis B, Block NL, Macramalla E, Kennealey GT (1995) Single-agent therapy with bicalutamide: a comparison with medical or surgical castration in the treatment of advanced prostate carcinoma. Urology 46(6):849–855

    Article  PubMed  CAS  Google Scholar 

  • Civantos F, Marcial MA, Banks ER et al (1995) Pathology of androgen deprivation therapy in prostate carcinoma: a comparative study of 173 patients. Cancer 75:1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Coleman R, Brown J et al (2006) Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res 12:3361–3367

    Article  PubMed  CAS  Google Scholar 

  • Corcoran NM, Gleave ME (2012) Targeted therapy in prostate cancer. Histopathology 60(1):216–231

    Article  PubMed  Google Scholar 

  • de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    Article  PubMed  Google Scholar 

  • Debes JD, Tindall DJ (2004) Mechanisms of androgen-refractory prostate cancer. N Engl J Med 351(15):1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Dias-Santagata D, Akhavanfardy S, David SS, Vernovsky K, Kuhlmann G, Boisvert SL, Stubbs H, McDermott U, Settleman J, Kwak EL, Clark JW, Isakoff SJ, Sequist LV, Engelman JA, Lynch TJ, Haber DA, Louis DN, Ellisen LW, Borger DR, John A (2010) Iafrate Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med 2:146–158

    Article  PubMed  Google Scholar 

  • El-Amm J, Aragon-Ching JB (2013) The changing landscape in the treatment of metastatic castration-resistant prostate cancer. Ther Adv Med Oncol 5(1):25–40

    Article  PubMed  Google Scholar 

  • el-Rayes BF, Hussain MH (2002) Hormonal therapy for prostate cancer: past, present and future. Expert Rev Anticancer Ther 2(1):37–47

    Article  PubMed  CAS  Google Scholar 

  • Evans AJ, Ryan P, van der Kwast T (2011) Treatment effects in the prostate including those associated with traditional and emerging therapies. Adv Anat Pathol 18:281–293

    Article  PubMed  CAS  Google Scholar 

  • Ewer MS, Martin FJ, Henderson C, Shapiro CL, Benjamin RS, Gabizon AA (2004) Cardiac safety of liposomal anthracyclines. Semin Oncol 31:161–181

    Article  PubMed  CAS  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45. Review

    Article  PubMed  CAS  Google Scholar 

  • Fizazi K, Carducci M, Smith M et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–882

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–436

    Article  PubMed  CAS  Google Scholar 

  • Galsky MD, Vogelzang NJ (2010) Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann Oncol 21:2135–2144

    Article  PubMed  CAS  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. Erratum in: N Engl J Med. 2012 Sep 6;367(10):976

    Article  PubMed  CAS  Google Scholar 

  • Gleave ME, Miyake H, Zellweger T et al (2001) Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology 58:39–49

    Article  PubMed  CAS  Google Scholar 

  • Growcott JW (2009) Preclinical anticancer activity of the specific endothelin A receptor antagonist ZD4054. Anticancer Drug 20:83–88

    Article  CAS  Google Scholar 

  • Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastases. Cancer 97:779–784

    Article  PubMed  Google Scholar 

  • Hodgson MC, Bowden WA, Agoulnik IU (2012) Androgen receptor footprint on the way to prostate cancer progression. World J Urol 30(3):279–285. Epub 2011 Sep 17. Review

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate. 71(15):1656–1667

    Google Scholar 

  • Huggins C, Hodges CV (1941) Studies on prostatic cancer: (1) the effect of estrogen and of androgen injection on serum phosphates in metastatic carcinoma of the prostate. Cancer Res 1:293–297

    CAS  Google Scholar 

  • Huggins C, Stevens RE, Hodges CV (1941) Studies on prostatic cancer: (II) the effects of castration on advanced carcinoma of the prostate gland. Arch Surg 43:209–223

    Article  CAS  Google Scholar 

  • Humphrey PA (2003) Prostate pathology. American Society for Clinical Pathology, Chicago, pp 456–476

    Google Scholar 

  • July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave ME (2002) Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50:179–188

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI, Koukouraki S, Giatromanolaki A, Kakolyris S, Georgoulias V, Velidaki A, Archimandritis S, Karkavitsas NN (2000) High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas–rationale for combination with radiotherapy. Acta Oncol 39:207–211

    Article  PubMed  CAS  Google Scholar 

  • Langenhuijsen JF, Badhauser D, Schaaf B, Kiemeney LA, Witjes JA, Mulders PF (2013) Continuous vs. intermittent androgen deprivation therapy for metastatic prostate cancer. Urol Oncol. 31(5):549–556

    Google Scholar 

  • Lee LF, Guan J, Qiu Y, Kung HJ (2001) Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk⁄Bmx, Src, and focal adhesion kinase. Mol Cell Biol 21:8385–8397

    Article  PubMed  CAS  Google Scholar 

  • Lee LF, Louie MC, Desai SJ et al (2004) Interleukin-8 confers androgenindependent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Hegde P, Zhang F, Hampton G, Jia S (2012) Prostate cancer – a biomarker perspective. Front Endocrinol (Lausanne) 3:72

    CAS  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327–330

    Article  PubMed  CAS  Google Scholar 

  • Mathew P, Dipaola R (2007) Taxane refractory prostate cancer. J Urol 178:S36–S41

    Article  PubMed  CAS  Google Scholar 

  • Mathew P, Thall PF, Bucana CD et al (2007) Platelet-derived growth factor receptor inhibition and chemotherapy for castration-resistant prostate cancer with bone metastases. Clin Cancer Res 13:5816–5824

    Article  PubMed  CAS  Google Scholar 

  • Mita AC, Denis LJ, Rowinsky EK et al (2009) Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 15:723–730

    Article  PubMed  CAS  Google Scholar 

  • Miyake H, Nelson C, Rennie PS, Gleave ME (2000) Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60:170–176

    PubMed  CAS  Google Scholar 

  • Mohler JL (2008) A role for the androgen-receptor in clinically localized and advanced prostate cancer. Best Pract Res Clin Endocrinol Metab 22(2):357–372. Review

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    Article  PubMed  CAS  Google Scholar 

  • Morote J, Orsola A, Planas J, Trilla E, Raventós CX, Cecchini L, Catalán R (2007) Redefining clinically significant castration levels in patients with prostate cancer receiving continuous androgen deprivation therapy. J Urol 178(4 Pt 1):1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol 27(3):251–257

    Google Scholar 

  • NCCN (National Comprehensive Cancer Network) (2011) Guidelines for Patientes. Proste cancer, Version 1

    Google Scholar 

  • Nelson JB, Chan-Tack K, Hedican SP et al (1996) Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res 56:663–668

    PubMed  CAS  Google Scholar 

  • Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3:110–116

    Article  PubMed  CAS  Google Scholar 

  • Park SI, Shah AN, Zhang J, Gallick GE (2007) Regulation of angiogenesis and vascular permeability by Src family kinases: opportunities for therapeutic treatment of solid tumors. Expert Opin Ther Target 11:1207–1217

    Article  CAS  Google Scholar 

  • Park SI, Zhang J, Phillips KA et al (2008) Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 68:3323–3333

    Article  PubMed  CAS  Google Scholar 

  • Petraki CD, Sfikas CP (2007) Histopathological changes induced by therapies in the benign prostate and prostate adenocarcinoma. Histol Histopathol 1:107–118

    Google Scholar 

  • Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Pienta KJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12(6):1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Pinto A, Merino M, Zamora P, Redondo A, Castelo B, Espinosa E (2012) Targeting the endothelin axis in prostate carcinoma. Tumour Biol 33(2):421–426. Epub 2011 Dec 29

    Article  PubMed  Google Scholar 

  • Saad F, Gleason DM, Murray R et al (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94:1458–1468

    Article  PubMed  CAS  Google Scholar 

  • Sartor O, Michels RM, Massard C, de Bono JS (2011) Novel therapeutic strategies for metastatic prostate cancer in the post-docetaxel setting. Oncologist 16(11):1487–1497. Epub 2011 Nov 2.Review

    Article  PubMed  CAS  Google Scholar 

  • Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261

    Article  PubMed  CAS  Google Scholar 

  • Scher HI, Liebertz C, Kelly WK, Mazumdar M, Brett C, Schwartz L, Kolvenbag G, Shapiro L, Schwartz M (1997) Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. J Clin Oncol 15(8):2928–2938

    PubMed  CAS  Google Scholar 

  • Schrijvers D, Van Erps P, Cortvriend J (2010) Castration-refractory prostate cancer: new drugs in the pipeline. Adv Ther 27:285–296

    Article  PubMed  CAS  Google Scholar 

  • Schwarz EM, Ritchlin CT (2007) Clinical development of anti-RANKL therapy. Arthritis Res Ther 9(suppl 1):S7

    Article  PubMed  Google Scholar 

  • Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL (2012) Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Target 13(10):1308–1323. Review

    Article  CAS  Google Scholar 

  • Srigley JR, Delahunt B, Evans AJ (2012) Therapy-associated effects in the prostate gland. Histopathology 60(1):153–165

    Article  PubMed  Google Scholar 

  • Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18(9):1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512

    Article  PubMed  CAS  Google Scholar 

  • Taplin ME (2008) Androgen receptor: role and novel therapeutic prospects in prostate cancer. Expert Rev Anticancer Ther 8(9):1495–1508. Review

    Article  PubMed  CAS  Google Scholar 

  • Têtu B (2008) Morphological changes induced by androgen blockade in normal prostate and prostatic carcinoma. Best Pract Res Clin Endocrinol Metab 22:271–283

    Article  PubMed  Google Scholar 

  • Têtu B, Srigley JR, Boivin JC et al (1991) Effect of combination endocrine therapy (LHRH agonist and flutamide) on normal prostate and prostatic adenocarcinoma. A histopathologic and immunohistochemical study. Am J Surg Pathol 15:111–120

    Article  PubMed  Google Scholar 

  • Tiligada E, Miligkos V, Delitheos A (2002) Cross-talk between cellular stress, cell cycle and anticancer agents: mechanistic aspects. Curr Med Chem Anticancer Agent 2:553–566

    Article  CAS  Google Scholar 

  • Tyrrell CJ, Payne H, See WA, McLeod DG, Wirth MP, Iversen P, Armstrong J, Morris C (2005) Casodex’ Early Prostate Cancer Trialists Group. Bicalutamide (‘Casodex’) 150 mg as adjuvant to radiotherapy in patients with localised or locally advanced prostate cancer: results from the randomised Early Prostate Cancer Programme. Radiother Oncol 76(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Vallancourt L, Têtu B, Fradet Y et al (1996) Effect of neoadjuvant endocrine therapy (combined androgen blockade) on normal prostate and prostatic carcinoma: a randomized study. Am J Surg Pathol 20:86–93

    Article  Google Scholar 

  • Zellweger T, Miyake H, July LV, Akbari M, Kiyama S, Gleave ME (2001) Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clusterin. Neoplasia 3:360–367

    Article  PubMed  CAS  Google Scholar 

  • Zellweger T, Chi K, Miyake H et al (2002) Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin Cancer Res 8:3276–3284

    PubMed  CAS  Google Scholar 

  • Zoubeidi A, Chi K, Gleave M (2010) Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin Cancer Res 16:1088–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Staibano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staibano, S. (2013). Resistance to Castration – Resistance to Drugs. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_7

Download citation

Publish with us

Policies and ethics