Skip to main content

Biosafety Considerations in the Context of Deployment of GE Trees

  • Chapter
  • First Online:
Challenges and Opportunities for the World's Forests in the 21st Century

Part of the book series: Forestry Sciences ((FOSC,volume 81))

Abstract

According to FAO world population will increase from the current seven to nine billion by 2050. This combined with ongoing climate change will lead to increased demands for land resources for food and feed production and subsequently to changes in land use from forestry to agricultural purposes. With an increased awareness of the importance of native forests for the world’s climate, harvesting from these forests is expected to decrease and conversions of native forest land to agricultural land may also become undesirable. Another factor for consideration will be an increased demand on land resources for the production of biofuels and bioproducts. In future, forests will be planted for raw materials for the pulp and paper industry and fiber production along with providing these new resources. In this scenario, productivity, in particular that of planted forests needs to be increased significantly, while at the same time native forests must be protected from further exploitation. Genetic engineering offers a potential to significantly and in relatively short time frames increase volume and quality of forest-based raw materials, thus, providing options to reduce world wide consumption of petrochemicals and increase the use of sustainable resources. Since forests can be grown on marginal lands, competition with land resources suitable for agricultural production can be avoided. At the same time, the increased productivity from bioengineered forests will provide an option to protect native forests.

The biosafety of genetically modified (GM) forests is an important consideration given the benefits expected from these plantations and the scale to which this will need to happen to have a meaningful impact. We assess the current scientific knowledge around the environmental safety of GM trees and discuss this in the context of expected environmental and economic benefits, and in the context of risk associated with accepted conventional tree breeding and forestry practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees Struct Funct 23:1125–1135

    CAS  Google Scholar 

  • Axelsson EP, Hjältén J, LeRoy CJ, Julkunen-Tiitto R, Wennström A, Pilate G (2010) Can leaf litter from genetically modified trees affect aquatic ecosystems? Ecosystems 13:1049–1059

    CAS  Google Scholar 

  • Axelsson EP, Hjältén J, LeRoy CJ, Whitham TG, Julkunen-Tiitto R, Wennström A (2011a) Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J Appl Ecol 48:1472–1479

    Google Scholar 

  • Axelsson EP, Hjältén J, Whitham TG, Julkunen-Tiitto R, Pilate G, Wennström A (2011b) Leaf ontology interacts with Bt modification to affect innate resistance in GM aspens. Chemoecology 21:161–169

    CAS  Google Scholar 

  • Balestrazzi A, Allegro G, Confalonieri M (2006) Genetically modified trees expressing genes for insect pest resistance. In: Fladung M, Ewald E (eds) Tree transgenesis – recent developments. Springer, Berlin

    Google Scholar 

  • Barros G, Magnoli C, Reynoso MM, Ramirez ML, Farnochi MC, Torres A, Dalcero M, Sequeira J, Rubinstein C, Chulze S (2009) Fungal and mycotoxin contamination in Bt maize and non-Bt maize grown in Argentina. World Mycotoxin J 2:53–60

    CAS  Google Scholar 

  • Batista R, Saibo N, Lourenço T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA 105:3640–3645

    PubMed  CAS  Google Scholar 

  • Birol I, Raymond A, Jackman SD et al (2013) Assembling the 20Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btt178

  • Bock R (2009) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22

    PubMed  Google Scholar 

  • Bradley KL, Hancock JE, Giardina CP, Pregitzer KS (2007) Soil microbial community responses to altered lignin biosynthesis in Populus tremuloides vary among three distinct soils. Plant Soil 294:185–201

    CAS  Google Scholar 

  • Brodeur-Campbell SE, Vucetich JA, Richter DL, Waite TA, Rosemier JN, Tsai CJ (2006) Insect herbivory on low-lignin transgenic aspen. Environ Entomol 35:1696–1701

    CAS  Google Scholar 

  • Brookes A (1999) The essence of SNPs. Gene 234:177–186

    PubMed  CAS  Google Scholar 

  • Brookes G, Barfoot P (2011) GM crops: global socio-economic and environmental impacts 1996–2009. PG Economics Ltd, UK

    Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132

    PubMed  CAS  Google Scholar 

  • Busov VB, Strauss SH, Pilate G (2010) Transformation as a tool for genetic analysis in Populus. Genetics and genomics of Populus. Springer, New York

    Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    PubMed  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    PubMed  CAS  Google Scholar 

  • Christin P-A, Edwards EJ, Besnard G, Boxall SF, Gregory R, Kellogg EA, Hartwell J, Osborne CP (2012) Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr Biol. doi:10.1016/j.cub.2012.01.054

    PubMed  Google Scholar 

  • Dawe D, Robertson R, Unnevehr L (2002) Golden rice: what role could it play in alleviation of Vitamin A deficiency? Food Policy 27:541–560

    Google Scholar 

  • DiFazio SP (2002) Measuring and modeling gene flow from hybrid poplar plantations: implications for transgenic risk assessment. Dissertation, Oregon State University

    Google Scholar 

  • Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG (2010) Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics 185:1477–1487

    PubMed  CAS  Google Scholar 

  • EFI (2011) The white paper, European bioeconomy in 2030 – delivering sustainable growth by addressing the grand societal challenges. published in Brussels at the final event of the BECOTEPS project. http://www.efi.int/portal/news___events/press_releases/?id=306

  • Ewald D, Hu J, Yang M (2006) Transgenic forest trees in China. Tree transgenesis – recent developments. In: Fladung M, Ewald E (eds) Tree transgenesis – recent developments. Springer, Berlin

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. FAO Forestry Paper 163, Rome http://www.fao.org/docrep/013/i1757e/i1757e.pdf

  • Fawcett R, Towery D (2002) Conservation tillage and plant biotechnology: how new technologies can improve the environment by reducing the need to plow. CTIC. http://www.whybiotech.com/resources/tps/ConservationTillageandPlantBiotechnology.pdf

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    PubMed  CAS  Google Scholar 

  • Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nat Biotechnol 26:615–617

    PubMed  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    CAS  Google Scholar 

  • Flachowsky H, Hanke V-M, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Fladung M (1990) Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed 104:295–304

    Google Scholar 

  • Fladung M, Kumar S (2002) Gene stability in transgenic aspen-Populus. III. T-DNA repeats influence transgene expression differentially among different transgenic lines. Plant Biol 4:329–338

    CAS  Google Scholar 

  • Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354

    Google Scholar 

  • Fladung M, Nowitzki O, Ziegenhagen B, Kumar S (2003) Vegetative and generative dispersal capacity of field released transgenic aspen trees. Trees Struct Funct 17:412–416

    Google Scholar 

  • Fladung M, Nowitzki O, Kumar S, Hoenicka H (2005) The site-specific recombination systems Cre-lox and FLP-FRT are functionally active in poplar. For Genet 12:121–130

    CAS  Google Scholar 

  • Fladung M, Schenk TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT-recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Tree Genet Genomes 6:205–217

    Google Scholar 

  • Fladung M, Altosaar I, Bartsch D, Baucher M, Boscaleri F, Gallardo F, Häggman H, Hoenicka H, Nielsen K, Paffetti D, Séguin A, Stotzky G, Vettori C (2012) European discussion forum on transgenic tree biosafety. Nat Biotechnol 30:37–38

    PubMed  CAS  Google Scholar 

  • Fladung M, Hoenicka H, Ahuja MR (2013) Genomic stability and long-term transgene expression in poplar. Transg Res. doi:10.1007/s11248-013-9719-2

  • FPAC (2011) The new face of Canadian forest industry. The emerging bio-revolution. The Bio-pathways project. http://www.fpac.ca/publications/BIOPATHWAYS%20II%20web.pdf

  • Gao BJ, Zhang F, Hou DY, Wu BJ, Zhang SP, Zhao XL (2003) Structure of arthropod community in stands of transgenic hybrid poplar 741. J Beijing For Univ 25:62–64 (in Chinese with an English abstract)

    Google Scholar 

  • Gao B, Gao S, Liu J, Jian W (2006) Variation of nutritional structure and ecological niche of arthropod community in plantation of transgenic insect-resistance hybrid poplar 741. J Beijing For Univ 25:3499–3507 (in Chinese with an English abstract)

    Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by Western Corn Rootworm. PLoS One 6:e22629. doi:10.1371/journal.pone.0022629

    PubMed  CAS  Google Scholar 

  • Genissel A, Viard F, Bourguet D (2000) Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula × P. tremuloides. Hereditas 133:85–93

    PubMed  CAS  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    PubMed  CAS  Google Scholar 

  • Gómez-Barbero M, Berbel J, Rodríguez-Cerezo E (2008) Bt corn in Spain – the performance of the EU’s first GM crop. Nat Biotechnol 26:384–386

    PubMed  Google Scholar 

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L I. Wood property traits. Genetics 175:399–409

    PubMed  Google Scholar 

  • Gonzalvez D (2004) Transgenic papaya in Hawaii and beyond. AgBioForum 7:36–40

    Google Scholar 

  • Grace LJ, Charity JA, Greham B, Kay N, Walter C (2005) Insect resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111

    PubMed  CAS  Google Scholar 

  • Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous forest trees. In: Reed BM (ed) Plant cryopreservation: a practical quide. Springer, New York

    Google Scholar 

  • Hancock JF (2003) A framework for assessing the risk of transgenic crops. Bioscience 53:512–519

    Google Scholar 

  • Hawkins S, Leplé J, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann For Sci 60:427–438

    Google Scholar 

  • Henderson AR, Walter C (2006) Genetic engineering in conifer plantation forestry. Silvae Genet 55:253–262

    Google Scholar 

  • Hoenicka H, Fladung M (2006a) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Google Scholar 

  • Hoenicka H, Fladung M (2006b) Faster evaluation of sterility strategies in transgenic early flowering poplar. Silvae Genet 55:241–292

    Google Scholar 

  • Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138–146. doi:10.3832/ifor0621-005

    Google Scholar 

  • Höfig KP, Möller R, Donaldson L, Putterill J, Walter C (2006) Towards male sterility in Pinus radiata – a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4:333–343

    PubMed  Google Scholar 

  • Hou Y, Su X, Jiao R, Huang Q, Chu Y (2009) Effects of transgenic Populus alba × P. glandulosa on soil microorganism. Sci Silvae Sinicae 45:148–152 (in Chinese with an English abstract)

    Google Scholar 

  • Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127

    Google Scholar 

  • Hu JJ, Zhang Y, Lu MZ, Zhang J, Zhang S (2004) Transgene stability of transgenic Populus nigra and its effects on soil microorganism. Sci Silvae Sinicae 40:105–109 (in Chinese with an English abstract)

    Google Scholar 

  • Hu JJ, Li SM, Lu MZ, Li JX, Li KH, Sun XQ, Zhao ZY (2007) Stability of insect-resistance of Bt transformed Populus nigra plantation and its effects on the natural enemies of insects. J For Res 20:656–659 (in Chinese with an English abstract)

    Google Scholar 

  • Hutchison WS, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Helmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    PubMed  CAS  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2012. ISAAA Brief No. 44. ISAAA, Ithaca, NY

    Google Scholar 

  • Jiang WH, Liu JX, Zhang F, Gai BJ (2009) Population dynamic of target pest, non-target pests and major natural enemy in transgenic hybrid poplar 741. J Shandong Agric Univ (Nat Sci) 40:195–199 (in Chinese with an English abstract)

    Google Scholar 

  • Jing Z, Gallardo F, Pascual M, Sampalo R, Romero J, de Navarra A, Canovás F (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145

    CAS  Google Scholar 

  • Kaldorf M, Fladung M, Muhs H, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660

    PubMed  CAS  Google Scholar 

  • Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res 7:123–149

    PubMed  CAS  Google Scholar 

  • Kitin P, Voelker S, Meinzer F, Beeckman H, Strauss S, Lachenbruch B (2010) Tyloses and Phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-flourescence microscopy. Plant Physiol 154:887–898

    PubMed  CAS  Google Scholar 

  • Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unswoirth J, Wauchope RD, Wong S-S (2007) Altered pesticide use on transgenic crops and the associated genral impact from an environmental perspective. Pest Manag Sci 63:1107–1115

    PubMed  CAS  Google Scholar 

  • Kole C, Hall TC (eds) (2008) Compendium of transgenic crop plants: transgenic forest tree species. Wiley. doi:10.1002/9781405181099.k0407

  • Kumar S, Fladung M (2001a) Gene stability in transgenic aspen (Populus) II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2001b) Controlling transgene integration in plants. Trends Plant Sci 6:55–159

    Google Scholar 

  • Lachance D, Hamel L-P, Pelletier F, Valéro J, Bernier-Cardou M, Chapman K, van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167

    Google Scholar 

  • Lamarche J, Hamelin RC (2007) No evidence of an impact on the rhizosphere diazotroph community by the expression of Bacillus thuringiensis Cry1Ab toxin by Bt white spruce. Appl Environ Microbiol 73:6577–6583

    PubMed  CAS  Google Scholar 

  • Lamarche J, Stefani FOP, Séguin A, Hamelin RC (2011) Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiol Ecol 76:199–208

    PubMed  CAS  Google Scholar 

  • Lambardi M, Aylin Ozudogru E, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Reed BM (ed) Plant cryopreservation: a practical quide. Springer, New York

    Google Scholar 

  • LeBlanc PM, Hamelin RC, Filion M (2007) Alteration of soil rhizosphere communities following genetic transformation of white spruce. Appl Environ Microbiol 73:4128–4134

    PubMed  CAS  Google Scholar 

  • Leplé J, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y et al (2007) Downregulation of cinnamoyl-coenzyme a Reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    PubMed  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    PubMed  CAS  Google Scholar 

  • Li J, Brunner AM, Shevchenko O, Meilan R, Ma C, Skinner JS, Strauss SH (2008a) Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 17:679–694

    PubMed  CAS  Google Scholar 

  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008b) Stability of herbicide resistance over 8 years of coppice in field-grown, genetically engineered poplars. West J Appl For 23:89–93

    Google Scholar 

  • Londo JP, Bautista NS, Sagers CL, Lee EH, Watrud LS (2010) Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Ann Bot 106:957–965

    PubMed  CAS  Google Scholar 

  • Lottmann J, O’Callaghan BD, Walter C (2010) Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.). Environ Biosafety Res 9:25–40

    PubMed  CAS  Google Scholar 

  • Meilan R, Auerbach D, Ma C, DiFazio S, Strauss S (2002a) Stability of herbicide resistance and GUS expression in transgenic hybrid poplars (Populus sp.) during four years of field trials and vegetative propagation. Hort Sci 37:277–280

    CAS  Google Scholar 

  • Meilan R, Han K-H, Ma C, DiFazio SP, Eaton JA, Hoien EA, Stanton BJ, Crockett RP, Taylor ML, James RR, Skinner JS, Jounin L, Pilate G, Strauss SH (2002b) The CP4 transgene provides high levels of tolerance to Roundup® herbicide in field-grown hybrid poplars. Can J For Res Rev Can Rech For 32:967–976

    CAS  Google Scholar 

  • Meilan R, Ma C, Cheng S, Eaton J, Miller L, Crockett R, DiFazio S, James R, Strauss S (2000) High levels of Roundup® and leaf-beetle resistance in genetically engineered hybrid cottonwoods. In: Blatner KA, Johnson JJ (eds) Hybrid poplars in the pacific northwest: culture, commerce and capability. Washington State University Cooperative Extension, Pullman

    Google Scholar 

  • Michaels SD, Amasino RM (1999) Flowering locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed  CAS  Google Scholar 

  • Modi RI, Castilla LH, Puskas-Rozsa S, Helling RB, Adams J (1992) Genetic changes accompanying increased fitness in evolving populations of Escherichia coli. Genetics 130:241–249

    PubMed  CAS  Google Scholar 

  • Neale D (2011) Genomics-based breeding in forest trees: are we there yet? BMC Proc 5:14. doi:10.1186/1753-6561-5-S7-I4

    Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    PubMed  CAS  Google Scholar 

  • Neale D, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    PubMed  CAS  Google Scholar 

  • Nehls U, Zhang C, Tarkka M, Hampp R, Fladung M (2006) Investigation of horizontal gene transfer from transgenic aspen to ectomycorrhizal fungi. In: Fladung M, Ewald E (eds) Tree transgenesis – recent developments. Springer, Berlin

    Google Scholar 

  • Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (eds) (2009) The environmental food crisis – The environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal. http://www.grida.no/files/publications/FoodCrisis_lores.pdf

  • Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    PubMed  CAS  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. doi:10.1038/nature12211

  • Oldfield S, Lusty C, MacKinven A (1998) The world list of threatened trees. Word Conservation Press, Cambridge

    Google Scholar 

  • Pasonen H-L, Lu J, Niskanen A-M, Seppänen S-K, Rytkönen A, Raunio J, Pappinen A, Kasanen R, Timonen S (2009) Effects of sugar beet chitinase IV on root-associated fungal community of transgenic silver birch in a field trial. Planta 230:973–983

    Google Scholar 

  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    PubMed  CAS  Google Scholar 

  • Pasonen H-L, Vihervuori L, Seppänen S-K, Lyytikäinen-Saarenmaa P, Ylioja T, von Weissenberg K, Pappinen A (2008) Field performance of chitinase transgenic silver birch (Betula pendula Roth): growth and adaptive traits. Trees Struct Funct 22:413–421

    CAS  Google Scholar 

  • Pilate G, Guiney E, Holt K et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    PubMed  CAS  Google Scholar 

  • Powell WA, Maynard CA, Boyle B, Séquin A (2006) Fungal and bacterial resistance in transgenic trees. In: Fladung M, Ewald E (eds) Tree transgenesis – recent developments. Springer, Berlin

    Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China – the benefits continue. Plant J 31:423–430

    PubMed  CAS  Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Annu Rev Resour Econ 1:665–693

    Google Scholar 

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186:677–686

    PubMed  CAS  Google Scholar 

  • Raney T (2006) Economic impact of transgenic crops in developing countries. Curr Opin Plant Biol 17:174–178

    CAS  Google Scholar 

  • Robischon M (2006) Field trials with transgenic trees – state of the art and developments. In: Fladung M, Ewald E (eds) Tree transgenesis – recent developments. Springer, Berlin

    Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    PubMed  CAS  Google Scholar 

  • Schell J, Van Montagu M, De Beuckeleer M, De Block M, Depicker A, De Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, Van Vliet F, Villarroel R (1979) Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc Lond B Biol Sci 204:251–266

    PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schnitzler F, Burgess EPJ, Kean AM, Philip BA, Barraclough EI, Malone LA, Walter C (2010) No unintended impacts of transgenic pine (Pinus radiata) trees on above ground invertebrate communities. Environ Entomol 39:1359–1368

    PubMed  Google Scholar 

  • Semagn K, Bjornstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. App Soil Ecol 36:100–106

    Google Scholar 

  • Simmons BA, Logué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:313–320

    PubMed  CAS  Google Scholar 

  • Stefani FOP, Bérube JA (2006) Evaluation of foliar fungal endophyte incidence in field-grown transgenic Bt white spruce trees. Can J Bot 84:1573–1580

    CAS  Google Scholar 

  • Stefani FOP, Moncalvo J, Séguin A, Bérubé JA, Hamelin RC (2009) Impact of an 8-year-old transgenic poplar plantation on the ectomycorrhizal fungal community. Appl Environ Microbiol 75:7527–7536

    PubMed  CAS  Google Scholar 

  • Stefani FOP, Tanguay P, Pelletier G, Piche Y, Hamelin RC (2010) Impact of endochitinase-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis. Appl Environ Microbiol 76:2607–2614

    PubMed  CAS  Google Scholar 

  • Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci U S A 109:2434–2438

    PubMed  CAS  Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    CAS  Google Scholar 

  • Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana ‘Guariento’). PLoS One 6:e24614. doi:10.1371/journal.pone.0024614

    PubMed  CAS  Google Scholar 

  • Sutela S, Niemi K, Edesi J, Laakso T, Saranpää P, Vuosku J, Mäkelä R, Tiimonen H, Chiang VL, Koskimäki J, Suorsa M, Julkunen-Tiitto R, Häggman H (2009) Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC Plant Biol 9:124. doi:10.1186/1471-2229-9-124

    PubMed  Google Scholar 

  • Thavamanikumar S, Tibbits J, McManus L, Ades P, Stackpole D, Hadjigol S, Vaillancourt R, Zhu P, Bossinger G (2011) Candidate gene-based association mapping of growth and wood quality traits in Eucalyptus globulus Labill. BMC Proc 5:O15. doi:10.1186/1753-6561-5-S7-O15

    Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Häggman H, Niemi K (2008) Paxillus involutus forms an ectomycorrhizal symbiosis and enhances survival of PtCOMT-modified Betula pendula in vitro. Silvae Genet 57:235–242

    Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang VL, Ylioja T, Roininen H, Häggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222:699–708

    PubMed  CAS  Google Scholar 

  • Tilston EL, Halpin C, Hopkins DW (2004) Genetic modifications to lignin biosynthesis in field-grown poplar trees have inconsistent effects on the rate of woody trunk decomposition. Soil Biol Biochem 36:1903–1906

    CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Ulrich K, Stauber T, Ewald D (2008a) Paenibacillus – a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tiss Org 93:347–351

    Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008b) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    PubMed  CAS  Google Scholar 

  • Vauramo S, Pasonen H, Pappinen A, Setälä H (2006) Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. Appl Soil Ecol 32:338–349

    Google Scholar 

  • Vihervuori L, Pasonen H, Lyytikäinen-Saarenmaa P (2008) Density and composition of an insect population in a field trial of chitinase transgenic and wild-type silver birch (Betula pendula) clones. Environ Entomol 37:1582–1591

    PubMed  CAS  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC et al (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    PubMed  CAS  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH (2011a) Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Env 34:655–668

    Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011b) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109

    PubMed  Google Scholar 

  • Walter C (2004) Genetic engineering in conifer forestry: technical and social considerations. In Vitro Cell Dev Biol Plant 40:434–441

    Google Scholar 

  • Walter C, Fenning T (2004) Deployment of genetically-engineered trees in plantation forestry – an issue of concern? The science and politics of genetically modified tree plantations. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Trivandrum

    Google Scholar 

  • Walter C, Boerjan W, Fladung M (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28:656–658

    PubMed  CAS  Google Scholar 

  • Walter C, Grace LJ, Wagner A, White DWR, Walden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468

    CAS  Google Scholar 

  • Wang J, Zhang JG, Hu JJ, Zhang Z, Zhang SG (2004) Studies on safety assessment of transgenic Bt poplar. China Biotechnol 24:49–52 (in Chinese with an English abstract)

    Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    PubMed  CAS  Google Scholar 

  • Wu F (2008) Field evidence: Bt corn and mycotoxin reduction, ISB News Report Feb:1–4. http://www.isb.vt.edu/news/2008/feb08.pdf

  • Yang M, Lang H, Gao B, Wang J, Zheng J (2003) Insecticidal activity and transgene expression stability of transgenic hybrid poplar clone 741 carrying two insect-resistant genes. Silvae Genet 52:197–201

    Google Scholar 

  • Yao L, Zhou GN, Feng ZH, Gao BJ, Yuan SL (2006) Survival and development immature Harmonia axyridis (Pallas) feeding on Chaitophorus popleti (Panzen) propagated on transgenic insect-resistance hybrid poplar 741. J Agric Univ Hebei 29:73–76

    Google Scholar 

  • Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V (2011) Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta 234:1285–1298

    PubMed  CAS  Google Scholar 

  • Zhang Z, Wang JH, Zhang JG, Zhang SG (2004) Effects of transgenic poplars to the structures of insect community. Sci Silvae Sinicae 40:84–89 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Zhang Q, Zhang Z-Y, Lin S-Z, Lin Y-Z (2005a) Resistance of transgenic hybrid triplolds in Populus tomentosa Carr. Against 3 species of lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genet 54:108–116

    Google Scholar 

  • Zhang Q, Zhang Z-Y, Lin S-Z, Lin Y-Z, Yang L (2005b) Assessment of rhizospheric microorganisms of transgenic Populus tomentosa with cowpea trypsin inhibitor (CpTI) gene. For Stud China 7:28–34

    CAS  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbd D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    PubMed  CAS  Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Diao S, Tian Y, Su X (2011a) Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes. Tree Physiol 31:567–573

    PubMed  Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Tian Y, Su X (2011b) Expression of Bt-Cry3A in transgenic Populus alba × P. glandulosa and its effects on target and non-target pests and the arthropod community. Transgenic Res 20:523–532

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hely Häggman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Häggman, H., Sutela, S., Walter, C., Fladung, M. (2014). Biosafety Considerations in the Context of Deployment of GE Trees. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_21

Download citation

Publish with us

Policies and ethics