Skip to main content

Reproducibility of Model-Based Results in Systems Biology

  • Chapter
Book cover Systems Biology

Abstract

Science requires that results are reproducible. This is naturally expected for wet-lab experiments and it is equally important for model-based results published in the literature. Reproducibility, in general, requires standards that provide the information necessary and tools that enable others to re-use this information. In computational biology, reproducibility requires not only a coded form of the model but also a coded form of the experimental setup to reproduce the analysis of the model. Well-established databases and repositories store and provide mathematical models. Recently, these databases started to distribute simulation setups together with the model code. These developments facilitate the reproduction of results. In this chapter, we outline the necessary steps towards reproducing model-based results in computational biology. We exemplify the workflow using a prominent example model of the Cell Cycle and state-of-the-art tools and standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A limit cycle is “a closed orbit which is isolated, i.e. neighboring orbits are not closed”. (Definition: TEDDY ontology, http://www.biomodels.net/teddy)

  2. 2.

    http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005

  3. 3.

    Please refer to Bellinger et al. [14] for an overview about the distinction between data, information, and knowledge

  4. 4.

    http://co.mbine.org/

  5. 5.

    http://www.ebi.ac.uk/miriam/main

  6. 6.

    http://www.uniprot.org/

  7. 7.

    www.ebi.ac.uk/biomodels-main/

  8. 8.

    http://www.cellml.org/models

  9. 9.

    http://jjj.biochem.sun.ac.za/database

  10. 10.

    http://senselab.med.yale.edu/modeldb/

  11. 11.

    http://www.ebi.ac.uk/biomodels-demo/search

  12. 12.

    http://sed-ml.org

  13. 13.

    http://libsedml.sourceforge.net/libSedML/SedMLScript.html

  14. 14.

    http://sysbioapps.dyndns.org/SED-ML_Web_Tools/

Abbreviations

SBML:

Systems Biology Markup Language

ChEBI:

Chemical Entities of Biological Interest

RDF:

Resource Description Framework

GO:

Gene Ontology

TEDDY:

TErminology for the Description of DYnamics

COMBINE:

The COmputational Modeling in BIology NEtwork

XML:

Extensible Markup Language

OWL:

Web Ontology Language

MIRIAM:

Minimum Information Required in the Annotation of Models

URN:

Uniform Resource Name

PMR2:

Physiome Model Repository

COPASI:

Complex Pathway SImulator

SED-ML:

Simulation Experiment Description Markup Language

MIASE:

Minimum Information About a Simulation Experiment

IR:

Information Retrieval

DDMoRe:

Drug Disease Model Resources

References

  1. Tyson J (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci 88(16):7328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Novak B, Tyson J (1997) Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci 94(17):9147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gardner TS, Dolnik M, Collins JJ (1998) A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc Natl Acad Sci 95(24):14190–14195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Csikasz-Nagy A, Battogtokh D, Chen KC et al (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361–4379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ferrell J Jr (2009) Q&A: systems biology. J Biol 8:2

    Article  PubMed Central  PubMed  Google Scholar 

  6. Li C, Donizelli M, Rodriguez N et al (2010) BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4(1):92

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ashburner M, Ball C, Blake J et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. de Matos P, Alcántara R, Dekker A et al (2010). Chemical entities of biological interest: an update. Nucleic acids research, 38(suppl 1):D249-D254.

    Google Scholar 

  9. Lassila O, Swick R et al (1998) Resource description framework (RDF) model and syntax specification. http://www.w3.org/TR/REC-rdf-syntax/. Accessed 19 Mar 2013

  10. Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160

    Article  PubMed Central  PubMed  Google Scholar 

  11. Davenport TH, Prusak L (2000) Working knowledge: How organizations manage what they know. Harvard Business Press, Boston

    Google Scholar 

  12. Klipp E, Liebermeister W, Helbig A et al (2007) Systems biology standards—the community speaks. Nat Biotechnol 25(4):390–391

    Article  CAS  PubMed  Google Scholar 

  13. Garfinkel D (1969) Construction of biochemical computer models. FEBS Lett 2:S9–S13

    Article  PubMed  Google Scholar 

  14. Bellinger G, Castro D, Mills A (2004) Data, information, knowledge, and wisdom. http://www.systems-thinking.org/dikw/dikw.htm. Accessed 13 Mar 2013

  15. Le Novère N (2006) Model storage, exchange and integration. BMC Neurosci 7:S11

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bray T, Paoli J, Sperberg-McQueen CM et al (2010) Extensible markup language (XML) 1.0. http://www.w3.org/TR/REC-xml/. Accessed 13 Mar 2013

  17. McGuinness D, van Harmelen F et al (2004) OWL web ontology language overview. http://www.w3.org/TR/owl2-overview/. Accessed 13 Mar 2013

  18. Strömbäck L, Hall D, Lambrix P (2007) A review of standards for data exchange within systems biology. Proteomics 7(6):857–867

    Article  PubMed  Google Scholar 

  19. Hucka M, Bergmann F, Keating S et al (2010) The systems biology markup language (SBML): language specification for level 3 Version 1. Nature proceedings

    Google Scholar 

  20. Cuellar A, Lloyd C, Nielsen P et al (2003) An overview of CellML 1.1, a biological model description language. Simulation 79(12):740–747

    Article  Google Scholar 

  21. Gleeson P, Crook S, Cannon R et al (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chen M, Freier A, Köhler J et al (2002) The biology Petri net markup language. In: J Desel, M Weske (ed) Proceedings of the Promise 2002, Potsdam, 2002

    Google Scholar 

  23. Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85:433–450

    Article  CAS  PubMed  Google Scholar 

  24. Cuellar A, Nielsen P, Halstead M et al (2006) Cellml 1.1 specification. http://www.cellml.org/specifications/cellml_1.1. Accessed 13 Mar 2013

  25. Le Novère N, Finney A, Hucka M et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23(12):1509–1515

    Article  PubMed  Google Scholar 

  26. Yu T, Lloyd C, Nickerson D et al (2011) The Physiome model repository 2. Bioinformatics 27(5):743–744

    Article  CAS  PubMed  Google Scholar 

  27. Snoep J, Olivier B (2003) JWS online cellular systems modelling and microbiology. Microbiology 149(11):3045–3047

    Article  CAS  PubMed  Google Scholar 

  28. Le Novère N, Bornstein B, Broicher A et al (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(suppl 1):D689–D691

    Article  PubMed Central  PubMed  Google Scholar 

  29. Henkel R, Endler L, Peters A, Le Novère N et al (2010) Ranked retrieval of computational biology models. BMC Bioinformatics 11(1):423

    PubMed Central  PubMed  Google Scholar 

  30. Novak B, Tyson J (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106(4):1153–1168

    CAS  PubMed  Google Scholar 

  31. Chen K, Calzone L, Csikasz-Nagy A et al (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8):3841–3862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Olivier B, Snoep J (2004) Web-based kinetic modelling using JWS online. Bioinformatics 20(13):2143–2144

    Article  CAS  PubMed  Google Scholar 

  33. Wolstencroft K, Owen S, du Preez F et al (2011) The SEEK: a platform for sharing data and models in systems biology. Methods Enzymol 500:629–655

    Article  CAS  PubMed  Google Scholar 

  34. Mendes P, Hoops S, Sahle S et al (2006) Computational modeling of biochemical networks using COPASI. Methods Mol Biol 500(2):17–59

    Google Scholar 

  35. Miller AK, Marsh J, Reeve A et al (2010) An overview of the CellML API and its implementation. BMC Bioinformatics 11:178

    Article  PubMed Central  PubMed  Google Scholar 

  36. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley, New York

    Google Scholar 

  37. Kelton W, Barton R (2003) Experimental design for simulation: experimental design for simulation. In: Proceedings of the 35th conference on Winter Simulation: driving innovation, New Orleans, 7–10 December 2003

    Google Scholar 

  38. Pawlikowski K, Jeong H, Lee J (2002) On credibility of simulation studies of telecommunication networks. Communications Magazine, IEEE 40(1):132–139

    Article  Google Scholar 

  39. Waltemath D, Adams R, Bergmann F et al (2011) Reproducible computational biology experiments with SED-ML—The simulation experiment description markup language. BMC Syst Biol 5(1):198

    Article  PubMed Central  PubMed  Google Scholar 

  40. Waltemath D, Adams R, Beard D et al (2011) Minimum information about a simulation experiment (MIASE). PLoS Comput Biol 7(4):e1001122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Clark J, DeRose S (1999) XML path language (XPath) version 1.0. http://www.w3.org/TR/1999/REC-xpath-19991116. Accessed 13 Mar 2013

  42. Courtot M, Juty N, Knüpfer C et al (2011) Controlled vocabularies and semantics in systems biology. Mol Syst Biol 7:543

    Article  PubMed Central  PubMed  Google Scholar 

  43. Adams R (2012) SED-ED, a workflow editor for computational biology experiments written in SED-ML. Oxf Bioinform 28(8):1180–1181

    Article  CAS  Google Scholar 

  44. Henkel R, Le Novère N, Wolkenhauer O et al (2012) Considerations of graph-based concepts to manage computational biology models and associated simulations. In: Goltz U (ed) Proceedings of the INFORMATIK2012. Brunswig, Germany, pp 16–21

    Google Scholar 

  45. Nature editors (2005) In pursuit of systems. Nature 435(7038):1

    Google Scholar 

  46. Guyton A, Abernathy B, Langston J et al (1959) Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol-Legacy Content 196(5):1008–1014

    CAS  Google Scholar 

  47. Montani JP, Mizelle HL, Adair TH et al (1989) Regulation of cardiac output during aldosterone-induced hypertension. J Hypertens 7(6):S206

    Article  CAS  Google Scholar 

  48. Bergmann F, Sauro H (2006) SBW-a modular framework for systems biology. In: Proceedings of the 38th conference on Winter Simulation, Monterey, 3–6 Dec 2006

    Google Scholar 

  49. Nordlie E, Gewaltig M, Plesser H (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Waltemath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Waltemath, D., Henkel, R., Winter, F., Wolkenhauer, O. (2013). Reproducibility of Model-Based Results in Systems Biology. In: Prokop, A., Csukás, B. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6803-1_10

Download citation

Publish with us

Policies and ethics