Skip to main content

The Role of Volatile Organic Compounds in Plant Resistance to Abiotic Stresses: Responses and Mechanisms

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Why plants constitutively emit certain volatile organic compounds is a question that has attracted numerous researchers since the discovery of emissions. A number of hypotheses exist regarding the role of constitutive volatile organic compounds and many of these highlight the role of these compounds in enhancing plant tolerance to certain abiotic stresses. As practically any stress can modify constitutive emissions and also elicit production of novel compounds (induced emissions), this chapter provides a review of the hypotheses with particular foci on the key environmental stresses – heat and drought. Furthermore, we discuss how changes in the atmospheric CO2 concentration over past and future geologic epochs are likely to affect the role of volatile organic compounds as an adaptation to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adushkin VV, Kudryavtsev VP (2010) Global methane flux into the atmosphere and its seasonal variations. Izv Phys Solid Earth 46:350–357

    Google Scholar 

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Phys 129:269–277

    CAS  Google Scholar 

  • Almeras E, Stolz S, Vollenweider S, Reymond P, Mene-Saffrane L, Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:205–216

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15(3):118–125

    PubMed  CAS  Google Scholar 

  • Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    PubMed  CAS  Google Scholar 

  • Asensio D, Owen SM, Llusià J, Peñuelas J (2008) The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biol Biochem 40:2937–2947

    CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    CAS  Google Scholar 

  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler J-P (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    PubMed  CAS  Google Scholar 

  • Behnke K, Loivamäki M, Zimmer I, Rennenberg H, Schnitzler J-P, Louis S (2010) Isoprene emission protects photosynthesis in sunfleck exposed grey poplar. Photosynth Res 104:5–17

    PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25:737–748

    CAS  Google Scholar 

  • Ben Taarit M, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B (2009) Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crop Prod 30(3):333–337. doi:10.1016/j.indcrop.2009.06.001

    CAS  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L) trees. Oecologia 107:456–462

    Google Scholar 

  • Boy M, Karl T, Turnipseed A, Mauldin RL, Kosciuch E, Greenberg J, Rathbone J, Smith J, Held A, Barsanti K, Wehner B, Bauer S, Wiedensohler A, Bonn B, Kulmala M, Guenther A (2008) New particle formation in the front range of the Colorado Rocky Mountains. Atmos Chem Phys 8:1577–1590

    CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    PubMed  CAS  Google Scholar 

  • Brilli F, Hörtnagl L, Bamberger I, Schnitzhofer R, Ruuskanen TM, Hansel A, Loreto F, Wohlfahrt G (2012) Qualitative and quantitative characterization of volatile organic compound emissions from cut grass. Environ Sci Technol 46:3859–3865

    PubMed  CAS  Google Scholar 

  • Bruhn D, Møller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209

    PubMed  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Capitani D, Brilli F, Mannina L, Proietti N, Loreto F (2009) In situ investigation of leaf water status by portable unilateral nuclear magnetic resonance. Plant Physiol 149:1638–1647

    PubMed  CAS  Google Scholar 

  • Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286

    PubMed  CAS  Google Scholar 

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176

    PubMed  CAS  Google Scholar 

  • Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signaling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594

    PubMed  CAS  Google Scholar 

  • Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139(1):485–496. doi: 10.1104/pp. 105.065995

    PubMed  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    PubMed  CAS  Google Scholar 

  • Cowling SA, Sage RF (1998) Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ 21:427–435

    CAS  Google Scholar 

  • Darbah JNT, Sharkey TD, Calfapietra C, Karnosky DF (2010) Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environ Pollut 158:1008–1014

    PubMed  CAS  Google Scholar 

  • Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146:27–36

    CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  • Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4951

    PubMed  CAS  Google Scholar 

  • Fares S, Mereu S, Scarascia Mugnozza G, Vitale M, Manes F, Frattoni M, Ciccioli P, Gerosa G, Loreto F (2009) The ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions in a Mediterranean ecosystem of Castelporziano (Rome): site characteristics, climatic and meteorological conditions, and eco-physiology of vegetation. Biogeosciences 6:1043–1058

    CAS  Google Scholar 

  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles 6:389–430

    CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    PubMed  CAS  Google Scholar 

  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318

    CAS  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    PubMed  CAS  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler J-P, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    PubMed  CAS  Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Met Soc 81:1537–1575

    Google Scholar 

  • Ghirardo A, Koch K, Taipale R, Zimmer I, Schnitzler J-P, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant Cell Environ 33:781–792

    PubMed  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820

    PubMed  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100:8873–8892

    CAS  Google Scholar 

  • Guidolotti G, Calfapietra C, Loreto F (2011) The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant 142:297–304

    PubMed  CAS  Google Scholar 

  • Hamilton JF, Lewis AC, Carey TJ, Wenger JC, Garcia EBI, Munoz A (2009) Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles. Atmos Chem Phys 9:3815–3823

    CAS  Google Scholar 

  • Hanson DT, Swanson S, Graham LE, Sharkey TD (1999) Evolutionary significance of isoprene emission from mosses. Am J Bot 86:634–639

    PubMed  CAS  Google Scholar 

  • Hao LQ, Yli-Pirila P, Tiitta P, Romakkaniemi S, Vaattovaara P, Kajos MK, Rinne J, Heijari J, Kortelainen A, Miettinen P, Kroll JH, Holopainen JK, Smith JN, Joutsensaari J, Kulmala M, Worsnop DR, Laaksonen A (2009) New particle formation from the oxidation of direct emissions of pine seedlings. Atmos Chem Phys 9:8121–8137

    CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Harley P, Greenberg J, Niinemets Ü, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099

    CAS  Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164

    PubMed  Google Scholar 

  • Holopainen JK (2011) Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Tree Physiol 31:1356–1377

    PubMed  CAS  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Ibrahim MA, Mäenpää M, Hassinen V, Kontunen-Soppela S, Malec L, Rousi M, Pietikainen L, Tervahauta A, Kärenlampi S, Holopainen JK, Oksanen EJ (2010) Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J Exp Bot 61:1583–1595

    PubMed  CAS  Google Scholar 

  • Jardine KJ, Monson RK, Abrell L, Saleska SR, Arneth A, Jardine A, Ishida FY, Maria A, Serrano Y, Artaxo P, Karl T, Fares S, Goldstein A, Loreto F, Huxman T (2011) Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Glob Change Biol 18:973–984

    Google Scholar 

  • Jelali N, Dhifi W, Chahed T, Marzouk B (2011) Salinity effects on growth, essential oil yield and composition and phenolic compounds content of marjoram (Origanum majorana L.) leaves. J Food Biochem 35(5):1443–1450. doi:10.1111/j.1745-4514.2010.00465.x

    CAS  Google Scholar 

  • Joutsensaari J, Loivamäki M, Vuorinen T, Miettinen P, Nerg A-M, Holopainen JK, Laaksonen A (2005) Nanoparticle formation by ozonolysis of inducible plant volatiles. Atmos Chem Phys 5:1489–1495

    CAS  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Rockmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814

    PubMed  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    CAS  Google Scholar 

  • Kiendler-Scharr A, Zhang Q, Hohaus T, Kleist E, Mensah A, Mentel TF, Spindler C, Uerlings R, Tillmann R, Wildt J (2009) Aerosol mass spectrometric features of biogenic SOA: observations from a plant chamber and in rural atmospheric environments. Environ Sci Technol 43:8166–8172

    PubMed  CAS  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis, New York, pp 27–52

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom LG (1993) Floral scents – a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280

    CAS  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P. alba) trees. J. Exp. Bot. 50:757–765

    Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    PubMed  CAS  Google Scholar 

  • Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31:1410–1415

    PubMed  CAS  Google Scholar 

  • Lerdau M (2007) A positive feedback with negative consequences. Science 316:212–213

    PubMed  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013a) Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ 36:429–437. doi:10.1111/j.1365-3040.2012.02584.x

    Google Scholar 

  • Li Z, Sharkey TD (2013b) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lichtenthaler HK (2010) Biosynthesis and emission of isoprene, methylbutenol and other volatile plant isoprenoids. In: Herrman A (ed) The chemistry and biology of volatiles. Wiley, Chichester, pp 11–47

    Google Scholar 

  • Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J. Exp. Bot. 60:3311–3336

    Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Estiarte M (2006) Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming. Physiol Plant 127(4):632–649. doi:10.1111/j.1399-3054.2006.00693.x

    Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Estiarte M (2008) Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a Mediterranean shrubland. Int J Plant Sci 169(5):637–645. doi:10.1086/533603

    Google Scholar 

  • Logan BA, Anchordoquy TJ, Monson RK, Pan RS (1999) The effect of isoprene on the properties of spinach thylakoids and phosphatidylcholine liposomes. Plant Biol 1(6):602–606. doi:10.1055/s-2007-978561

    CAS  Google Scholar 

  • Loreto F (2002) Distribution of isoprenoid emitters in the Quercus genus around the world: chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait. Perspect Plant Ecol Evol Syst 5:185–192

    Google Scholar 

  • Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123:1605–1610

    PubMed  CAS  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    PubMed  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    PubMed  CAS  Google Scholar 

  • Loreto F, Forster A, Durr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21:101–107

    CAS  Google Scholar 

  • Loreto F, Pinelli P, Brancaleoni E, Ciccioli P (2004a) 13C labelling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. Plant Physiol 135:1903–1907

    PubMed  CAS  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004b) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    PubMed  CAS  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    PubMed  CAS  Google Scholar 

  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler J-P (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:S138–S151

    CAS  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler RP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139:474–484

    PubMed  CAS  Google Scholar 

  • Mentel TF, Wildt J, Kiendler-Scharr A, Kleist E, Tillmann R, Dal Maso M, Fisseha R, Hohaus T, Spahn H, Uerlings R, Wegener R, Griffiths PT, Dinar E, Rudich Y, Wahner A (2009) Photochemical production of aerosols from real plant emissions. Atmos Chem Phys 9:4387–4406

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    PubMed  CAS  Google Scholar 

  • Mongelard G, Seemann M, Boisson AM, Rohmer M, Bligny R, Rivasseau C (2011) Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by 31P-NMR spectroscopy after specific inhibition of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature. Plant Cell Environ 34(8):1241–1247. doi:10.1111/j.1365-3040.2011.02322.x

    PubMed  CAS  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler J-P (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516. doi:10.1111/pce.12015

    PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010a) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010b) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639

    Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: sensitivity or insensitivity of the emission rates to stomatal closure explained. J Geophys Res Atmos 108:4208. doi: 4210.1029/2002JD002620

    Google Scholar 

  • Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physico-chemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010a) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    CAS  Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010b) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    CAS  Google Scholar 

  • O’Dowd CD, Aalto P, Hameri K, Kulmala M, Hoffmann T (2002) Aerosol formation – atmospheric particles from organic vapours. Nature 416:497–498

    PubMed  Google Scholar 

  • Ormeño E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    PubMed  Google Scholar 

  • Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem Biol 1:11–23

    PubMed  CAS  Google Scholar 

  • Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Malhi Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156

    CAS  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109

    PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    PubMed  Google Scholar 

  • Peñuelas J, Filella I, Seco R, Llusià J (2009) Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol Plant 53:351–354

    Google Scholar 

  • Petron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Geophys Res Lett 28:1707–1710

    CAS  Google Scholar 

  • Pinto DM, Blande JD, Nykanen R, Dong W-X, Nerg A-M, Holopainen JK (2007) Ozone degrades common herbivore-induced plant volatiles: Does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    PubMed  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biol 17:1595–1610

    Google Scholar 

  • Possell M, Heath J, Nicholas Hewitt C, Ayres E, Kerstiens G (2004) Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur. Global Change Biol 10:1835–1843

    Google Scholar 

  • Possell M, Ryan A, Vickers CE, Mullineaux PM, Hewitt CN (2010) Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence. Photosynth Res 104:49–59

    PubMed  CAS  Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578

    PubMed  CAS  Google Scholar 

  • Rasulov B, Copolovici L, Laisk A, Niinemets Ü (2009a) Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol 149(3):1609–1618. doi: 10.1104/pp. 108.133512

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009b) Evidence that light, carbon dioxide and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    PubMed  CAS  Google Scholar 

  • Rivasseau C, Seemann M, Boisson AM, Streb P, Gout E, Douce R, Rohmer M, Bligny R (2009) Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis. Plant Cell Environ 32(1):82–92. doi:10.1111/j.1365-3040.2008.01903.x

    PubMed  CAS  Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK (2004) Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate. Plant Biol 6:12–21

    PubMed  CAS  Google Scholar 

  • Santos LS, Dalmazio I, Eberlin MN, Claeys M, Augusti R (2006) Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 20:2104–2108

    PubMed  CAS  Google Scholar 

  • Sasaki K, Saito T, Laemsae M, Oksman-Caldentey K-M, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    PubMed  CAS  Google Scholar 

  • Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res Atmos 106:3111–3123

    CAS  Google Scholar 

  • Schnitzler J-P, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160

    PubMed  CAS  Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    CAS  Google Scholar 

  • Sharkey TD, Yeh SS (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron CD (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Google Scholar 

  • Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    PubMed  CAS  Google Scholar 

  • Šimpraga M, Verbeeck H, Demarcke M, Joó E, Pokorska O, Amelynck C, Schoon N, Dewulf J, Van Langenhove H, Heinesch B, Aubinet M, Laffineur Q, Müller JF, Steppe K (2011) Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L. Atmos Environ 45:5254–5259

    Google Scholar 

  • Singh HB, Salas LJ, Chatfield RB, Czech E, Fried A, Walega J, Evans MJ, Field BD, Jacob DJ, Blake D, Heikes B, Talbot R, Sachse G, Crawford JH, Avery MA, Sandholm S, Fuelberg H (2004) Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J Geophys Res-Atmos 109: D15S07. doi:10.1029/2003JD003883

  • Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188

    CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757

    CAS  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115(4):1413–1420

    PubMed  CAS  Google Scholar 

  • Singsaas EL, Laporte MM, Shi JZ, Monson RK, Bowling DR, Johnson K, Lerdau M, Jasentuliytana A, Sharkey TD (1999) Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol 19:917–924

    PubMed  CAS  Google Scholar 

  • Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Uiterkamp AJMS, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochim Biophys Acta-Biomembr 1768:198–206

    CAS  Google Scholar 

  • Spracklen DV, Bonn B, Carslaw KS (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc A-Math Phys Eng Sci 366:4613–4626

    CAS  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21:385–395

    CAS  Google Scholar 

  • Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res-Atmos 107: 4602. doi:10.1029/2001JD002043

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440

    Google Scholar 

  • Teuber M, Zimmer I, Kreuzwieser J, Ache P, Polle A, Rennenberg H, Schnitzler J-P (2008) VOC emissions of grey poplar leaves as affected by salt stress and different N sources. Plant Biol 10:86–96

    PubMed  CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler J-P (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    PubMed  CAS  Google Scholar 

  • Tingey DT, Evans RC, Bates EH, Gumpertz ML (1987) Isoprene emissions and photosynthesis in three ferns – the influence of light and temperature. Physiol Plant 69:609–616

    CAS  Google Scholar 

  • Tunved P, Hansson HC, Kerminen VM, Strom J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263

    PubMed  CAS  Google Scholar 

  • Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28:318–327

    CAS  Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant 122:219–225

    CAS  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005a) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532

    PubMed  CAS  Google Scholar 

  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005b) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166:419–426

    PubMed  CAS  Google Scholar 

  • Velikova V, Loreto F, Tsonev T, Brilli F, Edreva A (2006) Isoprene prevents the negative consequences of high temperature stress in Platanus orientalis leaves. Funct Plant Biol 33:931–940

    CAS  Google Scholar 

  • Velikova V, Fares S, Loreto F (2008) Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant Cell Environ 31:1882–1894

    PubMed  CAS  Google Scholar 

  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157:905–916

    PubMed  CAS  Google Scholar 

  • Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7:139–141

    PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009a) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    PubMed  CAS  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Hewitt CN (2009b) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    PubMed  CAS  Google Scholar 

  • Vickers CE, Possell M, Hewitt CN, Mullineaux PM (2010) Genetic structure and regulation of isoprene synthase in poplar (Populus spp.). Plant Mol Biol 73:547–558

    PubMed  CAS  Google Scholar 

  • Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM (2011) Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant Cell Environ 34:1043–1053

    PubMed  CAS  Google Scholar 

  • Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirila P, Leskinen J, Mäkela JM, Holopainen JK, Pöschl U, Kulmala M, Worsnop DR, Laaksonen A (2010) An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467:824–827

    PubMed  CAS  Google Scholar 

  • Visser EJW, Voesenek L, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91(2):107–109. doi:10.1093/aob/mcg014

    CAS  Google Scholar 

  • Way DA, Schnitzler J-P, Monson RK, Jackson RB (2011) Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 166:273–282

    PubMed  Google Scholar 

  • Went FW (1960) Blue hazes in the atmosphere. Nature 187:641–643

    Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905

    CAS  Google Scholar 

  • Wiedinmyer C, Guenther A, Harley P, Hewitt CN, Geron C, Artaxo P, Steinbrecher R, Rasmussen R (2004) Global organic emissions from vegetation. In: Granier C, Artaxo P, Reeves CE (eds) Emission of atmospheric trace compounds. Kluwers Academic Publishers, Dordrecht, pp 115–170

    Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant Cell Environ 31:622–631

    PubMed  CAS  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51(2):93–101. doi:10.1016/s0098-8472(03)00063-7

    CAS  Google Scholar 

  • Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback ME, Dellapenna D, Sharkey TD (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32:1538–1547

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Possell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Possell, M., Loreto, F. (2013). The Role of Volatile Organic Compounds in Plant Resistance to Abiotic Stresses: Responses and Mechanisms. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_8

Download citation

Publish with us

Policies and ethics